Accueil
Détail de l'auteur
Auteur Volkmar Vill |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Investigations of vegetable tannins as hair dyes and their interactions with pre-bleached hair fibres / L. Sargsyan in INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Vol. 42, N° 4 (08/2020)
[article]
Titre : Investigations of vegetable tannins as hair dyes and their interactions with pre-bleached hair fibres Type de document : document électronique Auteurs : L. Sargsyan, Auteur ; Volkmar Vill, Auteur ; Thomas Hippe, Auteur Année de publication : 2020 Article en page(s) : p. 320-327 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Cheveux -- Teinture
Colorants végétaux
Cosmétiques
Mordançage (teinture)
Produits capillaires
Spectrophotométrie
Tanins végétauxIndex. décimale : 668.5 Parfums et cosmétiques Résumé : - Objective : The aim of this work was to investigate an alternative hair-dyeing method with vegetable colourants as the tannins, as well as the impact of pre-treatment as the bleaching process.
- Methods : Untreated, 1, 2 and 3 times bleached hair tresses that were dyed with tannins in combination with metal salts were characterized. The wash fastness and the colour strength of the vegetable-dyed hair tresses were spectrophotometrically investigated.
- Results : To determine the colour strength KS and the wash fastness of vegetable-dyed and pre-bleached hair tresses, a three-dimensional colour coordinate system - CIELab - which describes the visual spectra is used. The distance between two colours in the CIELab colour space is expressed by ∆E-values, which are used to identify the wash fastness of the vegetable dye. The hair tresses that had been 3 times pre-bleached showed the highest colour strength and the best wash fastness. The fixation of the tannin–mordant complexes on the hair fibre proceeded effectively just when the hair tresses were bleached before the dying process. It is suggested that the sulphonic acid groups, which increase after bleaching hair, interact with the tannin–mordant hair dye and lead to stronger cross-links between keratinous fibres and tannin–mordant complexes. It was observed that the colour strength of the vegetable-dyed tresses correlates with the bleaching process.
- Conclusion : The presented results demonstrate that the fixation of the vegetable tannin–mordant dying solution on the hair fibres succeed effectively on pre-bleached hair tresses.Note de contenu : - MATERIALS AND METHODS : Hair tresses - Bleaching application - Dyeing application - Wash fastness of vegetable-dyed hair tresses - Colour measurement - Statistical analysis
- RESULTS AND DISCUSSION : Investigation of the impact of pre-bleaching hair samples and dying with mimosa powder extract and different mordants - Wash fastness Mimosa–iron(II)-lactate - Statistical analysis of colour fixation of bleached hair tresses
- Fig. 1 : Plausible interactions of keratinous fibre with tannin–mordant complex
- Fig. 2 : Colour strength of multiple pre-bleached hair tresses with mimosa and iron(II)-lactate dyed with the photographs of the REF
- Fig. 3 : Colour strength of multiple pre-bleached hair tresses with mimosa and iron(III)-sulphate dyed with the photographs of the REF
- Fig. 4 : Colour strength of multiple pre-bleached hair tresses with mimosa and potassium titanium oxalate dyed with the photographs of the REF
- Fig. 5 : Possible interactions between bleached keratinous hair fibre and vegetable tannin–mordant dye system
- Fig. 6 : Box and whisker plot of colour change ∆E hair tresses of 0 to 3 times pre-bleached after dyed with 1% mimosa and 1% iron(II)-lactate solutions with corresponding photographs of the hair tresses (n = 10). SE, standard error
- Fig. 7 : Box and whisker plot of colour change ∆E hair tresses of 0 to 3 times pre-bleached after dyed with 1% mimosa and 1% potassium titanium oxalate dihydrate solutions with corresponding photographs of the hair tresses (n = 10). SE, standard error
- Fig. 8 : Box and whisker plot of colour change ∆E hair tresses of 0 to 3 times pre-bleached after dyed with 1% mimosa and 1% iron(III)-sulphate solutions with corresponding photographs of the hair tresses (n = 10). SE, standard error
DOI : https://doi.org/10.1111/ics.12624 En ligne : https://drive.google.com/file/d/1XPVgSd60X1-txn7WwXmdEg6XcpGowHuh/view?usp=shari [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35283
in INTERNATIONAL JOURNAL OF COSMETIC SCIENCE > Vol. 42, N° 4 (08/2020) . - p. 320-327[article]Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire The influence of natural gelling agents on the foaming behaviour and foam structure in surfactant systems / Gina marin Velasquez in SOFW JOURNAL, Vol. 146, N° 1-2 (01-02/2020)
[article]
Titre : The influence of natural gelling agents on the foaming behaviour and foam structure in surfactant systems Type de document : texte imprimé Auteurs : Gina marin Velasquez, Auteur ; martin Neubauer, Auteur ; Thomas Willers, Auteur ; Volkmar Vill, Auteur Année de publication : 2020 Article en page(s) : p. 20-25 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Biopolymères
Emulsions -- Stabilité
Epaississants
Gélifiants
Gomme de guarLa gomme de guar est extraite de la graine de la légumineuse Cyamopsis tetragonoloba, où elle sert de réserve d'aliments et d'eau.
La gomme de guar est composée principalement de galactomannane, une fibre végétale soluble et acalorique. Le galactomannane est un polymère linéaire composé d'une chaine de monomères de mannose ((1,4)-beta-D-mannopyranose) auxquelles sont ramifiés par un pont 1-6 une unité de galactose. Le ratio entre le mannose et le galactose est de 2 pour 1, ainsi en moyenne une unité de galactose est ramifié tous les deux mannose sur la chaine. Par comparaison, il est de 4 pour 1 pour la gomme de caroube et 3 pour 1 pour la gomme tara.
La gomme de guar est un additif alimentaire (E4124) largement utilisé dans l'industrie agro-alimentaire. Elle permet notamment d'alléger certaines préparations en remplaçant le rôle de l'amidon, de sucres ou de matières grasses. La gomme de guar est utilisée comme épaississant, stabilisant et émulsifiant dans les aliments grâce à sa texture uniforme et ses propriétés pour former des gels. Elle peut être utilisée dans les sauces, soupes, crèmes glacées et sorbets, produits de boulangerie et de pâtisserie, poudres, etc.
Gomme de xanthaneLa gomme xanthane est un polyoside obtenu à partir de l'action d'une bactérie, la Xanthomonas campestris. Elle est soluble à froid et est utilisée comme additif alimentaire sous le code E415 pour ses propriétés épaississantes et gélifiantes afin de modifier la consistance des aliments.
Le xanthane est l'un des exopolysaccharides excrétés par divers microorganismes du sol (bactéries notamment). Il joue un rôle important, à l'échelle moléculaire, dans la formation et la conservation des sols3, tout comme le dextrane, le rhamsane ou les succinoglycanes.
Ingrédients cosmétiques
Mousse (chimie) -- Analyse
Stabilisants (chimie)
SurfactantsIndex. décimale : 668.5 Parfums et cosmétiques Résumé : The use of microplastics in cosmetic surfactant formulations represents an increasing ecological problem. As a natural alternative the polymers examined in this work, guar gum, cationic guar gum and xanthan gum can be used as thickening agent or as stabiliser of emulsions. The rheology changed by the polymer-based gelling agent also influences the foam properties as well as the stability of the product. This is why the compatibility of several natural polymers were analysed with two different surfactant systems (anionic non-ionic surfactant system and amphoteric non-ionic surfactant system) for the specific application parameters such as the foaming behaviour, the foam stability and the foam structure and its aging. The influence of electrolytes was also analysed on the example of sodium chloride (NaCI) and then compared with the foam properties of the polymer-based gelling agent. The foam analytics was carried out using the Dynamic Foam Analyzer DFA100 (KRÃœSS GmbH). In doing so, the recently released Foam Flash Method is presented and used, a method that is particularly good for the analysis of the foaming behaviour of strongly foaming surfactant solutions.
The addition of the polymer-based gelling agent to the surfactant systems had a substantial improvement to the foam formation and the foam stability, and significant influence on the foam structure. The strongest effects were shown by xanthan gum. It is also shown that the influence of individual gelling agent on the foaming behaviour depends strongly on the characteristics of the surfactant system.Note de contenu : - INTRODUCTION : Foam in surfactant solutions
- MATERIALS AND METHODS : Foaming behaviour - Foam stability and structure
- RESULTS AND DISCUSSION : Foam stability and structure
- Fig. 1 : Schematic structure of the ideal foam structure. Polyhedral foam structure, planar liquid lamella and plateau border according to Joseph Plateau
- Fig. 2 : Foaming behaviour using the KRÃœSS Foam Flash method. The liquid foam boundary is represented in red and the foam / air boundary in green. The detected total height at the end of each stirring cycle is represented in yellow
- Fig. 3 : Representation of the foaming properties depending on the time in a Foam Flash measurement. Left: anionic non-ionic surfactant system. Right: amphoteric non-ionic surfactant system. Black curve: without gelling agent, red curve: with 0.5% NaCl, blue curve: with 0.5% xanthan gum, yellow curve: with 0.5% guar gum, green curve: with 0.5% cationic guar gum
- Fig. 4 : Representation of the foam structure and the foam stability after foaming. Top: bubble density depending on the time. Bottom: foam decay depending on the time. Left : anionic non-ionic surfactant system. Right : amphoteric non-ionic surfactant system. Black curve: without gelling agent, red curve : with 0.5% NaCl, light blue curve : with 0.5% xanthan gum, dark blue curve: with 1.0% xanthan gum, yellow curve: with 0.5% guar gum, brown curve: with 1.0% guar gum, bright green curve : with 0.5% cationic guar gum, dark green curve: with 1.0% cationic guar gum
- Fig. 5 : Changing of the foam structure within 300 seconds. Top : anionic/non-ionic surfactant system. Bottom : amphoteric non-ionic surfactant system. A : without gelling
agent, B : with 0.5% NaCl, C: with 0.5% xanthan gum, D: with 0.5% guar gum or cationic guar gum
- Fig. 6 : Representation of the bubble area. Left : anionic non-ionic surfactant system. Right : amphoteric non-ionic surfactant system. Black curve : without gelling agent, red curve : with 0.5% NaCl, light blue curve: with 0.5% xanthan gum, dark blue curve: with 1.0% xanthan gum, yellow curve: with 0.5% guar gum, brown curve : with 1.0% guar gum, bright green curve : with 0.5% cationic guar gum, dark green curve: with 1.0% cationic guar gumEn ligne : https://drive.google.com/file/d/10LdUq5iYi_m__kC08tnNzfXNkkHbTNer/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=33755
in SOFW JOURNAL > Vol. 146, N° 1-2 (01-02/2020) . - p. 20-25[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21511 - Périodique Bibliothèque principale Documentaires Disponible