Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Analysis estimation and minimization of carbon footprint in leather processing unit operations / Venkatasubramanian Sivakumar in JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS & CHEMISTS (JSLTC), Vol. 108, N° 3 (05-06/2024)
[article]
Titre : Analysis estimation and minimization of carbon footprint in leather processing unit operations Type de document : texte imprimé Auteurs : Venkatasubramanian Sivakumar, Auteur Année de publication : 2024 Article en page(s) : p. 127-137 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Bilan des émissions de gaz à effets de serre
Calcul
Cuirs et peaux -- Industrie -- Aspect de l'environnement
Electricité
Énergie -- Consommation
Opérations mécaniques
TanneriesIndex. décimale : 675 Technologie du cuir et de la fourrure Résumé : In a growing environmental concern on reducing greenhouse gas emissions (GHGs) as well as achieving United Nations (UN) sustainable development goals (SDGs), the development of a suitable methodology for the assessment of carbon footprint (CFP) for process industries such as leather is necessary. In this regard, a systematic approach, considering the energy requirements of various unit operations of a mechanical nature in leather processing, within a tannery and their contribution towards CFP has been presented for the first time. Estimation of CFP for the raw skin/ hide to finished leather process has been performed using USA Energy Information Administration (EIA) data, incorporating respective power consumption (kWh) values for the whole process, with unit operations or stages, comprising mechanical or machinery operations and considering two types of power plant: coal and natural gas. Processing types such as Raw-Finished, Raw-Wet blue, Wet blue- Finish have been considered for skins and hides. Calculation of CFP has been performed for a typical tannery processing a capacity of 600 sides or 2000 skins per day. The results show that, 0.29 and 0.77 kW average total energy consumption respectively per kg of raw hide and skin for processing to finished leather. The total CO2 emissions (kg) have been calculated as 0.3 and 0.78 kg, respectively for per kg of hide or skin processed to finished leather; or in terms of area of leather, 0.16 and 0.15 kg, per square foot of finished leather produced. The present analysis suggests, that the more energy intensive operations and the duration of each mechanical operation per skin or hide in processing contribute significantly to the total power consumption and corresponding CO2 emission values. A road map for reduction in CFP in leather processing has also been presented. Note de contenu : - MATERIALS AND METHODS : Methods for calculation of energy requirement - Methodology for estimation of carbon footprint (CFP)
- RESULTS AND DISCUSSIONS : Total power consumption (kWh) for a typical tannery processing skins - Carbon footprint, CO2 (kg) emission from Total Power consumption (kWh) for a typical tannery processing of skins - Total Power consumption (kWh) for a typical tannery processing sides (hides) -
- Table 1 : The CO2 equivalent of other GHGs as 100 year General warming potential (GWP) (Source: Climate Change Connection) (CCC, 2023)
- Table 2 : Consideration of time taken scenarios for processing of each skin or hide piece for each mechanical operation (Sec.) and for the Total processing capacity (h) of present study
- Table 3 : Important mechanical operations in leather process flow, machinery employed, power ratings and tasks accomplished
- Table 4 : Calculation of total power consumption (kwh) for coal based power plant for a typical tannery processing 2000 skins per day for type of processing : raw to finish, raw to wet-blue and wet-blue to finish
- Table 5 : Carbon footprint, CO2 (kg) emission as calculated from total power consumption (kWh) for coal or natural gas based power plant for a typical tannery processing 2000 skins per day for type of processing : raw to finish, raw to wet-blue and wet-blue to finish
- Table 6 : Calculation of total power consumption (kwh) for coal based power plant for a typical tannery processing 600 sides per day for type of processing : raw to finish, raw to wet-blue and wet-blue to finish
- Table 7 : Carbon footprint, CO2 (kg) emission as calculated from total power consumption (kWh) for coal or natural gas based power plant for a typical tannery processing 600 sides per day for type of processing: raw to finish, raw to wet-blue and wet-blue to finishPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=41138
in JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS & CHEMISTS (JSLTC) > Vol. 108, N° 3 (05-06/2024) . - p. 127-137[article]Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Approaches to minimize titanium dioxide consumption in coatings- a review / Nandkumar Kadam in PAINTINDIA, Vol. LXIX, N° 9 (09/2019)
[article]
Titre : Approaches to minimize titanium dioxide consumption in coatings- a review Type de document : texte imprimé Auteurs : Nandkumar Kadam, Auteur ; Pratiksha Chaher, Auteur ; Nilesh Mhatre, Auteur ; Mahesh Kadam, Auteur Année de publication : 2019 Article en page(s) : p. 77-84 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Argile
Bilan des émissions de gaz à effets de serre
CalcinationLa calcination est une technique de préparation d'échantillon utilisée en chimie analytique qui permet de prendre en compte ce phénomène. Elle consiste à chauffer l'échantillon à haute température (typiquement 500 à 1 000 °C) sous air ou sous atmosphère neutre pour provoquer des réactions physiques et chimiques et mettre ainsi l'échantillon dans un état de référence.
En effet, un certain nombre de propriétés des matériaux dépendent de la température et de l'historique de l'échantillon comme de l'humidité. La calcination permet de l'abstraire de ces effets et donc d'avoir des mesures reproductibles, de pouvoir comparer différents échantillons. En revanche, il faut être conscient que l'échantillon analysé n'est pas l'échantillon prélevé. La méthode est similaire à l'analyse des extraits secs mais utilise une température plus élevée.
Dioxyde de titane
Dioxyde de titane -- Suppression ou remplacement
Sphères creusesIndex. décimale : 667.9 Revêtements et enduits Résumé : Titanium dioxide (TiO2) is closely associated with paint industry as a white pigment. Its efficient light scattering phenomenon delivers high brightness and good opacity. The increasing market demand, cost, limited resources and an energy intensive manufacturing process demands for the either complete or partial substitution of TiO2. This review article discusses briefly about the changing trends of TiO, substitution in paint industries. Many substitutes viz ; kaolin, clay, calcium carbonate (both untreated and calcined) and hallow latex spheres, along with other alternatives are reviewed. Note de contenu : - FACTORS GOVERNING THE SUBSTITUTIONS MARKET : Lifetime quality - Possible reactions - Price - Resource availability
- CHEMISTRY OF TiO2
- ALTERNATIVE OF TiO2 : Direct replacements (Zinc oxide - Impregnated TiO2) - Top-down approaches (Calcium carbonate (CaCO2) - Clay minerals - Kaolin - Talc - Perlite - Calcined clays) - Bottom-up approaches (Hollow latex spheres - Hollow glass spheres) - Precipitation (Precipitation method - Spray precipitation) - Nanorattles - Spacers of TiO2 - Others way to reduce TiO2 consumption
- Fig. 1 : Rutile and antase TiO2
- Fig. 2 : Opacity of materials
- Fig. 3 : Spheres produced from 24 Li2O-12Al2O3-64B2O3 glass. Nearly all particles have been spherodized by the torch method, regardless of size
- Fig. 4 : Scanning electron micrographs showing the morphology of nano and micro scale aluminum chlorhydrate (ACH) particles
- Fig. 5 : Nanorattles containing TiO2
- Table 1 : Mine production and estimated titanium ore production in thousands of tons
- Table 2 : Refractive index, refractive tinting strength and specific gravity of some white pigments
- Table 3 : Analysis of alternatives to TiO2. Average values for each alternative's properties and the number of responses between bracketsEn ligne : https://drive.google.com/file/d/1sGHY8lzNYxWvaRz_Bty689pvPR4gcMuY/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=33074
in PAINTINDIA > Vol. LXIX, N° 9 (09/2019) . - p. 77-84[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21228 - Périodique Bibliothèque principale Documentaires Disponible Assessing environmental impact of biocides / Monika Lamoratta in EUROPEAN COATINGS JOURNAL (ECJ), (05/2024)
[article]
Titre : Assessing environmental impact of biocides : An overview on theuse of biocides and the influence on the paint product carbon footpring Type de document : texte imprimé Auteurs : Monika Lamoratta, Auteur ; Pietro Rosato, Auteur Année de publication : 2024 Article en page(s) : p. 34-38 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Antimicrobiens -- Aspect de l'environnement
Bilan des émissions de gaz à effets de serre
Environnement -- Etudes d'impact
Revêtements (produits chimiques):Peinture (produits chimiques)
Revêtements -- Additifs:Peinture -- AdditifsIndex. décimale : 667.9 Revêtements et enduits Résumé : Bio-based materials have the potential to reduce reliance on non-renewable resources and lower the environmental impact. For paints and coatings manufacturers, such topics are becoming increasingly important as the regulatory framework is pushing the industry towards less hazardous and more environmentally friendly solutions. For the chemical industry most companies also try to anticipate future regulations. Note de contenu : - Sustainability in the chemical industry
- Focus on climate action and energy efficiency, and sustainable products
- Biocides in industry
- Latest restrictions on biocides
- Consequences of biocide restrictions for the paitn industry
- Sustainability in the coating industry
- Is a biocide a key driver on the PCF of a paint ?
- Fig. 1 : Key sustainability principles
- Table 1 : Key parameters to improve the sustainability of an end-product
- Table 2 : Calculation of a paint PCF and the influence of a biocidal active substanceEn ligne : https://drive.google.com/file/d/1rnKLGnObkY6rCTUEDQFO-PZ8wQar0oUU/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=40889
in EUROPEAN COATINGS JOURNAL (ECJ) > (05/2024) . - p. 34-38[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24639 - Périodique Bibliothèque principale Documentaires Disponible Assessing the environmental impact of textiles and the clothing supply chain / Subramanian Senthilkannan Muthu / Cambridge [United Kingdom] : Woodhead Publishing Ltd (2014)
Titre : Assessing the environmental impact of textiles and the clothing supply chain Type de document : texte imprimé Auteurs : Subramanian Senthilkannan Muthu, Editeur scientifique Editeur : Cambridge [United Kingdom] : Woodhead Publishing Ltd Année de publication : 2014 Autre Editeur : Amsterdam [Nederland] : Elsevier Collection : Woodhead publishing series in textiles num. 157 Importance : XVIII-194 p. Présentation : ill. Format : 24 cm Prix : 215 E Note générale : Index - Bibliogr. Langues : Anglais (eng) Catégories : Approvisionnement dans l'entreprise
Bilan des émissions de gaz à effets de serre
Chaine logistique
Durée de vie (Ingénierie)
Environnement -- Etudes d'impact
Textiles et tissus -- Aspect de l'environnement
Textiles et tissus -- Industrie -- Aspect de l'environnementIndex. décimale : 677 Textiles Résumé : The textile industry impacts the environment in a number of ways, including its use of resources, its impact on global warming, and the amount of pollution and waste it generates. Assessing the Environmental Impact of Textiles and the Clothing Supply Chain reviews methods used to calculate this environmental impact, including product carbon footprints (PCFs), ecological footprints (EFs), and life cycle assessment (LCA).
The first chapters provide an introduction to the textile supply chain and its environmental impact, and an overview of the methods used to measure this impact. The book goes on to consider different environmental impacts of the industry, including greenhouse gas emissions, the water and energy footprints of the industry, and depletion of resources, as well as the use of LCA to assess the overall environmental impact of the textile industry. It then deals with the practice of measuring these impacts before forming a conclusion about the environmental impact of the industry.Note de contenu : 1. The textile supply chain and its environmental impact
2. Ways of measuring the environmental impact of textile processing : an overview
3. Textile processing and greenhouse gas emissions : methods for calculating the product carbon footprint (PCF) of textile product
4. Calculating the water and energy footprints of textile products
5. Textile processing and resource depletion : calculating the ecological footprint of textile product
6. Estimating the overall environmental impact of textile processing: life cycle assessment (LCA) of textile products
7. Life cycle assessment (LCA) and product carbon footprint (PCF) modelling of textile products
8. End-of-life management of textile products
9. Measuring the environmental impact of textiles in practice : calculating the product carbon footprint (PCF) and life cycle assessment (LCA) of particular textile products
10. Assessing the environmental impact of textiles : summary and conclusionsPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=30042 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 19631 677 MUT Monographie Bibliothèque principale Documentaires Disponible Assessment of carbon contribution to the East Kolkata Welland Ecosystem (Ramsar Site: 1208) by leather producing units of the Calcutta Leather Complex : Part I / Sudin Pal in JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS & CHEMISTS (JSLTC), Vol. 99, N° 1 (01-02/2015)
[article]
Titre : Assessment of carbon contribution to the East Kolkata Welland Ecosystem (Ramsar Site: 1208) by leather producing units of the Calcutta Leather Complex : Part I Type de document : texte imprimé Auteurs : Sudin Pal, Auteur ; Buddhadeb Chattopadhyay, Auteur ; Subhra Kumar Mukhopadhyay, Auteur Année de publication : 2015 Article en page(s) : p. 1-7 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Bilan des émissions de gaz à effets de serre
Cuirs et peaux -- Industrie -- Inde
Dioxyde de carboneIndex. décimale : 675 Technologie du cuir et de la fourrure Résumé : In the context of addition of carbon to East Kolkata Wetland (EKW) ecosystem, an attempt has been made to provide a comprehensive computation of carbon input by raw hides-skins and different chemicals ; and carbon output by various solid and liquid waste from the leather industry. The calculations are based on the conventional operations of nine tanneries of which three produce bag leather, three gloves and three shoe uppers. The amount of carbon that enters into the leather industry depends upon the selection of raw hides and skins, percentage of chemicals used and purity of chemicals. ln case of bag leather and shoe upper manufacturing units the carbon value changes depending on the tannery specific finishing recipe, spray types and number of coats. Besides this the carbon value also changes with the customeris required finish. Whereas the carbon value of solid and liquid wastes changes depending upon the carbon input, mechanical operations and the binding of chemicals with hides and skins. The analysis of large samples from nine selected tanneries has permitted us to calculate that 396.1 ± 11.67kg carbon are present in one tonne raw cattle hides or skins. The processing of this one tonne cattle raw hides and skins results in 65.54 ± 13.06kg carbon being incorporated with chemicals and, from which 320.75 ± 16.37kg of carbon are discharged in the EKW area through different solid and liquid wastes. The tannery agglomerates at the Calcutta Tannery Complex at Bantala, Kolkata are situated on the boundary of the EKW, a Ramsar site, and so this work is thought to be important to assess the carbon-budget of the EKW ecosystem. Note de contenu : - MATERIALS AND METHODS
- RESULTS : Process variations - Bag leather tanneries - Glove leather tanneries - Shoe upper tanneries
- DISCUSSION : Soaking - Liming - Pickling and chrome tanning - Mechanical operations and post-tanning - Carbon sourcesEn ligne : https://drive.google.com/file/d/1aVYTSm-19LE3A6Gro5nlskWAaGy2YqXH/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=23227
in JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS & CHEMISTS (JSLTC) > Vol. 99, N° 1 (01-02/2015) . - p. 1-7[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16961 - Périodique Bibliothèque principale Documentaires Disponible Assessment of carbon contribution to the East Kolkata Wetland ecosystem (Ramsar Site : 1208) by leather producing units of the Calcutta leather complex : Part II / Sudin Pal in JOURNAL OF THE SOCIETY OF LEATHER TECHNOLOGISTS & CHEMISTS (JSLTC), Vol. 99, N° 2 (03-04/2015)
PermalinkBilan carbon inventory : factor of competitiveness / Alain Fournier in JEC COMPOSITES MAGAZINE, N° 68 (10/2011)
PermalinkPermalinkCan machines calculate carbon ? / Karl Flowers in INTERNATIONAL LEATHER MAKER (ILM), N° 64 (03-04/2024)
PermalinkCarbon catastrophe or forests for the future / Richard Daniels in WORLD LEATHER, Vol. 15, N° 2 (04/2002)
PermalinkCarbon footprint and energy balance of biodiesel produced from tannery fleshings / Eylem Kiliç in JOURNAL OF THE AMERICAN LEATHER CHEMISTS ASSOCIATION (JALCA), Vol. CIX, N° 9 (09/2014)
PermalinkCarbon footprint and toxicity indicators of alternative chromium-free tanning in China / Xiaoying Xu in JOURNAL OF THE AMERICAN LEATHER CHEMISTS ASSOCIATION (JALCA), Vol. CX, N° 5 (05/2015)
PermalinkCarbon footprint of a tanning company / Eylem Kiliç in LEATHER INTERNATIONAL, Vol. 217, N° 4863 (08/2016)
PermalinkCarbon footprint of the cattle industry / Raymond L. Desjardins in LEATHER INTERNATIONAL, Vol. 215, N° 4829 (04/2013)
PermalinkCarbon neutral automotive leathers / Karl Flowers in INTERNATIONAL LEATHER MAKER (ILM), N° 47 (05-06/2021)
PermalinkLa chimie durable : pour l’environnement, l’économie, notre société ! / Eric Firtion in L'ACTUALITE CHIMIQUE, N° 427-428 (03-04/2018)
PermalinkCircular economy and adhesive bonding technology, part 2 / Andreas GroB in ADHESION - ADHESIVES + SEALANTS, Vol. 19, N° 1/2022 (2022)
PermalinkA closer look at the present of lower carbon footprint solutions / Carmen Pey in SOFW JOURNAL, Vol. 150, N° 1/2 (01-02/2024)
PermalinkCO2 footprint of injection molding machines / Bertram Stern in KUNSTSTOFFE INTERNATIONAL, Vol. 112, N° 6 (2022)
PermalinkConversion de biomasse en ingrédients biorenouvelables et abordables / Steve Block in EXPRESSION COSMETIQUE, N° Hors-série (2023)
Permalink