Accueil
Détail de l'auteur
Auteur Matthew Gadman |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
New urethane diol resin modifiers for improved performance of aminoplast crosslinked coatings / Matthew Gadman in COATINGS TECH, Vol. 16, N° 2 (02/2019)
[article]
Titre : New urethane diol resin modifiers for improved performance of aminoplast crosslinked coatings Type de document : texte imprimé Auteurs : Matthew Gadman, Auteur ; John Florio, Auteur ; Ravi Ravichandran, Auteur ; Steven Woltornist, Auteur Année de publication : 2019 Article en page(s) : p. 34-46 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Aminoplastes
Anticorrosion
Diols
Formulation (Génie chimique)
Hexaméthoxy méthyl mélamine
MélamineLa mélamine, de nom chimique 1,3,5-triazine-2,4,6-triamine, est parfois dénommée cyanuramide ou cyanurotriamine. Sa formule brute est C3H6N6.
Les "résines mélamine-formaldéhyde" ou "mélamine-formol" (sigle MF) sont appelées "mélamine" dans le langage courant. Elles font partie de la famille des aminoplastes qui regroupe des résines thermodurcissables aminées, issues d'un comonomère tel l'urée ou la mélamine, parfois le thiocarbamide, le cyanamide hydrogène ou le dicyandiamide ; le second comonomère étant le formaldéhyde.
Polyesters
Polyuréthanes
Résistance à l'humidité
Résistance au vieillissement
Résistance aux brouillard salin
Revêtements en phase aqueuse -- Additifs
Solubilité
UrethanesIndex. décimale : 667.9 Revêtements et enduits Résumé : New water-soluble urethane diol resins have been developed to be used as resin modifiers for waterborne coatings systems crosslinked with amino resins. These urethane diols are a multipurpose chemical species that can be utilized to enhance performance properties as well as resolve some of the common issues experienced when formulating waterborne systems.
The above-mentioned resin modifiers are water soluble without the presence of amine neutralizers, surfactants, or co-solvents. Incorporating these urethane diols will thus improve the water solubility of a resin system in a wet paint, subsequently reducing the need for neutralizing amines and additionally allowing for easier resin incorporation with less co-solvent requirements. As resin modifiers, the urethane backbone allows formulators to enhance performance of aminoplast crosslinked coatings by incorporating urethane groups into a crosslinked network without the use of an isocyanate.
This work demonstrates the versatility of these urethane diols and further discusses how they can be used to enhance coating performance by improving corrosion and humidity resistance, as well as increasing hardness while maintaining flexibility.Note de contenu : - INTRODUCTION : Waterborne polyester formulations crosslinked with amino resins - Formulating with melamine crosslinkers - Necessity and effects of amine in PE/HMMM coatings - Polyurethane coatings - Urethane linkages in melamine coatings - Pursuit of non-VOC coatings : the rise of aqueous formulations and their limitations - Urethane diols for modifying aqueous formulations crosslinked with amino resins
- EXPERIMENTAL : Experiment I : crosslinking capabilities of urethane diols with amino resins - Experiment II : reactivity of 1° vs 2° hydroxyl functional urethane diol - Cure response - Thermal gravimetric analysis - Experiment III : acid etch resistance of diol D modified white pigmented polyester coating - Experiment IV : diol a modifications of WB PE crosslinked with HMMM - Amine required for neutralization - Solids, water, and VOC content - Film properties - Moisture resistance - Salt fog resistance - Age stability
- Table 1 : Physical properties of urethane diols
- Table 2 : Physical properties of saturated polyesters
- Table 3 : White pigmented water thinnable PE grind
- Table 4a : Formulation components of white pigmented water-thinnable PE
- Table 4b : Characteristics of white pigmented PE formulation
- Table 5 : Acid Etch resistance of diol D modified white PE formulations
- Table 6a : Formulation 1 : Clear water-reducible PE-HMMM
- Table 6b : Characteristics of formulation 1
- Table 7a : Formulation II : Clear water-diluable PE-HMMM
- Table 7b : Characteristics of formulation II
- Table 8a : Formulation II : White (Tio2) water-thinnable PE-HMMM
- Table 8b : Characteristics of formulation III
- Table 9 : Appearance of formulation 1 at start of titration
- Table 10 : DMEA content of formulations I and II
- Table 11 : Test specifications for film property tests
- Table 12 : Appearance recovery after 215 h of humidity exposure
- Table 13 : Film appearance after 1500 h of humidity exposure
- Table 14 : Film appearance after salt fog exposure
- Table 15 : Film appearance after salt fog exposure
- Table 16 : Formulation 1 pot appearance upon aging - RT, 50°C and 60°CEn ligne : https://drive.google.com/file/d/1vkvHYKZ7oV59ZkEupyjg8q1fUyST1R1x/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31853
in COATINGS TECH > Vol. 16, N° 2 (02/2019) . - p. 34-46[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20648 - Périodique Bibliothèque principale Documentaires Disponible Novel metal-free catalysts for epoxy carboxy coatings / Ravi Ravichandran in COATINGS TECH, Vol. 16, N° 3 (03/2019)
[article]
Titre : Novel metal-free catalysts for epoxy carboxy coatings Type de document : texte imprimé Auteurs : Ravi Ravichandran, Auteur ; Michael Emmet, Auteur ; Matthew Gadman, Auteur ; John Florio, Auteur ; Steven Woltornist, Auteur Année de publication : 2019 Article en page(s) : p. 28-40 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Automobiles -- Vernis
Catalyseurs
Essais accélérés (technologie)
Essais de résilience
Essais dynamiques
Formulation (Génie chimique)
Polyacryliques
Réticulation (polymérisation)
vernis en phase solvant
ViscositéIndex. décimale : 667.9 Revêtements et enduits Résumé : A new class of metal-free catalysts has been developed that promotes the crosslinking reaction of epoxy functional polymers with carboxyl functional compounds and polymers. Particularly effective at much lower cure temperatures, these catalysts provide stable single package formulations and improved resistance properties. In addition, unlike amine-based cmpounds, these catalysts do not yellow during cure or on over-bake. Note de contenu : - INTRODUCTION : Epoxy acid automotive clearcoats - Epoxy acid-based powder coatings - Binder, crosslinking chemistry, and catalysis
- EXPERIMENTAL : Experiment I : catalyst studies on NACURE XC-324 in a 1K SP epoxy/carboxy clearcoat (Materials and preparation of 1K SB epoxy/carboxy clearcoat formulation - Film preparation of 1K SB epoxy/carboxy clearcoats - Film properties of catalyzed clearcoats - Viscosity stability of epoxy carboxy liqiud coatings - Gel fraction studies - QUV resistance of catalyzed epoxy carboxy coatings - Humidity exposures of catalyzed epoxy carboxy coatings - Crickmeter abrasion - Overbake resistance) - Experiment II : Catalyst studies on NACURE XC-355 in a 2K SB epoxy/carboxy clearcoat (materials and preparation of 2K SB/epoxy carboxy clearcoat formulation - Film preparation of 2KSB epoxy/carboxy clearcoat - Film preparation of HMMM crosslinked acrylic and epoxy/carboxy clearcoats - Cure response of acrylic OH/HMMM and acrylic COOH/GMA - Environmental etch comparison of acrylic OH/HMMM vs acrylic COOH/GMA
- Fig. 1 : Epoxy carboxy crosslinking reaction
- Fig. 1a : Viscosity stability of epoxy/carboxy SB coatings (60°C storage)
- Fig. 1b : Viscosity stability of epoxy/carboxy SB coatings (50°C storage)
- Fig. 1c : Viscosity stability of epoxy/carboxy SB coatings (ambient storage)
- Fig. 2 : Percent weight retention after 6h of reflux with acetone/metanol (1/1)
- Fig. 3 : Yellowness measurements after QUV exposure
- Fig. 4 : Change in gloss following crockmeter abrasion
- Fig. 5 : Yellowing (b*) and total color (E*) change of clearcoats after overbake
- Fig. 6 : Oscillation curve of complet viscosity and temperature as a function of time
- Fig. 7 : MEK resistance of hardness of epoxy/acid clearcoats-100°C/30 min bake
- Table 1 : Classes of available catalyst technologies
- Table 2 : 1K SB epoxy/carboxy clearcoat
- Table 3a : Film properties of carboxy functional acrylic and GMA epoxy-120°C/30 min
- Table 3b : Film properties of carboxyl functional acrylic and GMA epoxy - 110°C/30 min
- Table 4 : Viscosity stability of epoxy carboxy liquid coatings (60°C/16 h)
- Table 5 : Gel fraction studies after 6h Soxhlet extraction with acetone/methanol (1/1)
- Table 6 : Yellowness measurements after QUV exposure-b*values
- Table 7 : Yellowness measurements after QUV exposure-Δ*values
- Table 8 : Humidity exposures of catalyzed epoxy/carboxy coatings-Blister ratings
- Table 9 : Visual rating for crockmeter tests-0-R rating
- Table 10 : Images with visual rating and change in gloss following crockmeter abrasion
- Table 11 : Change in color values of catalyzed clearcoats after overbake
- Table 12 : 2K solventborne epoxy/carboxy clearcoat
- Table 13a : Pre-experiment steps for oscillation tests
- Table 13b : Protocol for oscillation tests
- Table 14 : Film properties of carboxyl functional acrylic and GMA epoxy-100°C/30 min
- Table 15 : Yellowing resistance follwing 100°C/30 min overbake
- Table 16 : Total color change following 100°C/30 min overbake
- Table 17 : (a) Hydroxyl functional acrylic/HMMM vs (b) acid functional acrylic/GMA epoxy
- Table 18 : MEK resistance of (a) acrylic OH/HMMM vs (b) acrylic COOH/GMA
- Table 19 : Acid etch resistance of (a) acrylic OH/HMMM vs (b) acrylic COOH/GMAEn ligne : https://drive.google.com/file/d/1hbklMv6qE5mymZKYqIQ2MXKYVZtkH1VA/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32045
in COATINGS TECH > Vol. 16, N° 3 (03/2019) . - p. 28-40[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20698 - Périodique Bibliothèque principale Documentaires Disponible Unique catalyst for low temperature cure epoxy powder coatings / Matthew Gadman in COATINGS TECH, Vol. 20, N° 1 (01-02/2023)
[article]
Titre : Unique catalyst for low temperature cure epoxy powder coatings Type de document : texte imprimé Auteurs : Matthew Gadman, Auteur ; John Florio, Auteur ; Matt C. Salvi, Auteur Année de publication : 2023 Article en page(s) : p. 18-33 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Basses températures
Bisphénol A
Blanc (couleur)
Catalyseurs
Epoxydes
Formulation (Génie chimique)
Homopolymères
Isocyanurate de triglycidyle
Méthacrylate de glycidyle
Polyacryliques
Réticulation (polymérisation)
Revêtements bi-composant
Revêtements organiques
Revêtements poudre
Rhéologie
Stabilité au stockage
ThermodurcissablesIndex. décimale : 667.9 Revêtements et enduits Résumé : Powder coatings continue to ba an attractive technology, primarily due to reduced volatile organic compound (VOC) emissions, ability to recycle overspray, and the exceptional film mechanical properties that can be attained. Despite the appeal, there are major drawbacks that need to be resolved for the technology to be effectively substitutable for liquid coatings. Note de contenu : - POWDER HISTORY AND TODAY'S MARKET : Launch of thermoset powder technology-innovation and low VOC initiatives : Circa 1950-1990 - Continued growth in a variety of markets-postmillennial - Environmentally aware consumers and VOC regulations : contemporary market
- A REVIEW OF THERMOSET POWDER TECHNOLOGIES : 1. Epoxy hybrids - 2. TGIC coatings (polyester) - 3. Acrylic systems - 4. Pure epoxy formulations
- CATALYSTS FOR EPOXY POWDER COATINGS :
- EXPERIMENTAL : Experiment I : Cure capabilities in acrylic/GMA-SB and pwoder formulations - Formulations, materials, and preparation of 2K SB acrylic/GMA and pwder acrylic/GMA - Rheology studies of 2K SB acrylic/GMA and pwder acrylic/GMA
- EXPERIMENT II : Accelerating epoxy homopolymerization : Formulations, materials, and preparation of catalyzed epoxy resins - Rheology studies of catalyzed BPA epoxy resins
- EXPERIMENT III : EVALUATION OF CATALYST PC IN FULLY FORMULATED WHITE EPOXY HYBRID POWDER : Formulations, materials, and preparation of white epoxy hybrid - Rheology studies of white epoxy hybrid - Film preparation of white epoxy hybrid - Film evaluation of white epoxy hybrid - Storage stability
- EXPERIMENT IV : EVALUATION OF CATALYST PC IN FULLY FORMULATED WHITE TGIC POWDER : Formulations, materials, and preparation of white TGIC formulation - Rheology studies of white TGIC formulation - Film preparation of white TGIC formulation - Film evaluation of white TGIC formulation - Storage stability
- Fig. 1 : Bisphenol-1 type epoxy resins, n ≥ 0
- Fig. 2 : Hydroxy ester formation via reaction of epoxides and carboxyl groups
- Fig. 3 : Triglycidylisocyanurate (TGIC) crosslinker
- Fig. 4 : Glycidyl methacrylate (GMA) monomer
- Fig. 5 : Dicyandiamide (DICY) crosslinker
- Fig. 6A : Initiating epoxy/amine polymerization
- Fig. 6B : Epoxy homopolymerization via catalysis by tertiary amine
- Fig. 6C : Deprotonation of hydroxyls and subsequent reactions with epoxy
- Fig. 6D : Amide formation via reaction of hydroxyl with nitrile
- Fig. 7A : Base catalysis : deprotonation of carboxylic acid*
- Fig. 7B : Base catalysis : interaction of conjugate acid with epoxide oygen
- Fig. 8 : Preparing powder disks using cylindrical pellet press
- Fig. 9 : Catalyst LC gel temperature in S B and powder acrylic/GMA system
- Fig. 10 : Log (lη*l) as a function of temperature : increasing dosages of catalyst LC
- Fig. 11 : Gel temperatures of white epoxy hybrid
- Fig. 12 : MEK resistance of white epoxy hybrids baked at various temperatures
- Fig. 13 : Impact resistance of white epoxy hybrid baked at various temperatures for 15 mn
- Fig. 14 : ΔΕ of catalyzed versus uncatalyzed white epoxy hybrid
- Fig. 15 : Pendulum and pencil hardness of white epoxy hybrid-bake temp./ 15 mn
- Fig. 16 : Log (lη*l) as a function of temperature-white TGIC formulation
- Fig. 17 : Impact resistance of white TGIC formluation - % active catalyst on TRS
- Fig. 18 : Gloss and color of white TGIC formulation-60° GU and b*
- Table 1 : Commonly used catalysts for epoxy reaction with carboxylic acids
- Table 2 : Physical properties of catalyst LC and catalyst PC
- Table 3 : 2K SB acrylic/GMA formulation
- Table 4 : Powder acrylic/GMA formulation
- Table 5A : Pre-experiment steps for SB oscillation tests
- Table 5B : Protocol for SB oscillation tests
- Table 6A : Pre-experiment steps for powder oscillation tests
- Table 6B : Protocol for powder oscillation tests
- Table 7 : Solventless BPA epoxy resin
- Table 8A : Pre-experiment steps for solventless epoxy oscillation tests
- Table 8B : Protocol for solventless oscillation tets
- Table 9 : Gel temp and onset temp of BPA epoxy resin with catalyst LC
- Table 10A : Breakdown of components of uncatalyzed white epoxy hybrid
- Table 10B : % breakdown of uncatalyzed and catalyzed white epoxy hybrid
- Table 11A : Pre-experiment steps for white epoxy hybrid oscillation tests
- Table 11B : Protocol for white epoxy hybrid oscillation tests
- Table 12 : Color values of white epoxy hybrid : L*, a*, b*
- Table 13 : Gloss properties of white epoxy hybrid-60° gloss units (GU)
- Table 14 : Uncatalyzed white TGIC formulationEn ligne : https://drive.google.com/file/d/1geR64CGC-_890pO1tV9GH-iQvIM2r4Eg/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=38714
in COATINGS TECH > Vol. 20, N° 1 (01-02/2023) . - p. 18-33[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23812 - Périodique Bibliothèque principale Documentaires Disponible