Accueil
MATERIAUX & TECHNIQUES . Vol. 108, N° 5-6Materials and Society : transitions in society, materials and energyMention de date : 2020 Paru le : 15/12/2020 |
Dépouillements
Ajouter le résultat dans votre panierHow to tell the story of change and transition of the energy, ecological and societal systems / Jean-Pierre Birat in MATERIAUX & TECHNIQUES, Vol. 108, N° 5-6 (2020)
[article]
Titre : How to tell the story of change and transition of the energy, ecological and societal systems Type de document : texte imprimé Auteurs : Jean-Pierre Birat, Auteur Année de publication : 2020 Article en page(s) : 26 p. Note générale : Glossaire - Bibliogr. Langues : Anglais (eng) Catégories : Développement durable
Transition écologique
Transition énergétiqueIndex. décimale : 304.2 Ecologie humaine : les activités sociales humaines et l'environnement. Pollution Résumé : After overusing the expression Sustainable Development, some action plan was needed to switch from rhetorical to transformational change. One of the answers was to propose the word Transition as a roadmap leading to the necessary level of change. A Transition is a passage from one stable regime to another, with a step that is neither instantaneous nor dangerous, like a Revolution, but is fast enough, anyway. The first Transition in the 2010s was the Energy Transition, i.e. a move towards less fossil fuels and more renewables. It started everywhere more or less at the same time, but Germany and its Energiewende was among the first contenders. The implicit objective was as much to control excessive anthropogenic GHG emissions as it was to possibly start a new period of growth based on green technologies. Very soon, however, the Fukushima disaster convinced Mrs. Merkel to change tack and veer towards “zero nuclear power”, thus aligning with the program of the Green movements. At that point, the Energiewende had become a complex, multi-objectives program for change, not a simple Transition as described at the onset of the paper. The rest of the world turned to Globish and spoke of the Energy Transition (EnT). Each country added a layer of complexity to its own version of the EnT and told a series of narratives, quite different from each other. This is analyzed in the present article on the basis of the documents prepared by the “energy-community”, which assembles hard scientists and economists, a group that the soft scientists of SSH call STEM. EnT, in its most recent and mature version, hardly speaks of energy any more but of GHG emissions. Therefore, EnT drifted towards the expression Ecological Transition (EcT). Both expressions are almost synonymous today. From then on, myriads similar expressions sprang up: Environmental Transition, Demographic, Epidemiological and Environmental Risk Transition, Societal Transitions, Global Transitions, Economic Transition, Sustainability Transition, Socio-Ecological Transitions, Technology Transitions, Nutrition Transition, Agro-Ecological Transition, Digital Transition, Sanitary Transition as well as various practices like Energy Democracy or Theory of Transition. Focusing only on EnT and EcT, a first step consists in comparing energy technologies from the standpoint of their impact on public health: thus, coal is 2 or 3 orders of magnitude worse than renewable energy, not to speak of nuclear. A second step looks at the materials requirement of Renewables, what has been called the materials paradox. They are more materials-intensive and also call on much larger TMRs (Total Materials Requirement). On the other hand, the matter of critical materials has been blown out of proportion and is probably less out of control than initially depicted. A third step is accomplished by Historians, who show that History is full of energy transitions, which did not always go in one direction and did not always match the storytelling of progress that the present EnT is heavily relying on. Moreover, they flatly reject the long-term storytelling of History depicted as a continuous string of energy transitions, from biomass, to coal, oil, gas, nuclear and nowadays renewables. Just as interesting is the opinion of the Energy-SSH community. They complain that the organizations that control research funds and decision makers listen mainly to the STEM-energy community rather than to them. And they go on to explain, sometimes demonstrate, that this restricts the perspective, over-focuses on certain technologies and confines SSH to an ancillary role in support of projects, the strategy of which is decided without their input: the keyword is asymmetry of information, which therefore leads to distortion of decision-making. They also stress the need for a plurality of views and interpretations, a possible solution to the societal deadlocks often encountered in Europe. As important and strategic as energy issues are in our present world, the hubris of both STEM and SSH communities may be excessive. Some level of success in making them work together may be a way to resolve this situation ! Note de contenu : - Transition et transitions
- The energy transition, German style (die energiewende)
- The energy transition, elsewhere in the world : The case in France - The rest of the world - Subcategories in the energy transition
- The ecological transition
- Other transitions
- Other disciplinary prisms through which to explore transitions : Transitions and public health - Transitions and materials need - Energy transitions in history - SSH approaches to energy transitions
- Fig. 1 : Revolution vs. transition, from the standpoint of history and mathematics
- Fig. 2 : The concept of the demographic transition
- Fig. 3 : Energy transition plan in Germany in 2012
- Fig. 4 : Share of renewable energy in the electrical grid (Germany)
- Fig. 5 : ADEME's projections for the French energy system, until 2050
- Fig. 6 : ADME's projections of energy consumption in the industrial and construction sectors (France)
- Fig. 7 : Final energy consumption in 2010, 2035 and 2050 by type of energy (France)
- Fig. 8 : TCEP, trnasition indicators and energy CO2 emissions : the IEA structure of energy transition indicators
- Fig. 9 : Total primary energy supply (TPES), world, according to the IRENA BAU and Remap scenarios
- Fig. 10 : Cumulative energy-related carbon emissions
- Fig. 11 : Total primary energy supply (TPES) by source Japan (1990-2018)
- Fig. 12 : Lessons from the energy transition in Europe
- Fig. 13 : Sustainability transitions
- Fig. 14 : Theory of transitions according to geel
- Fig. 15 : Number of deaths (occupational and air pollution) due to the production of 1TWh relative to various electricity generation technologies
- Fig. 16 : Intensity of steel use in a power plant
- Fig. 17 : ECE including Rare Earths, Platinum Group, photovoltaic elements and other elements (2010)
- Fig. 18 : TMR in 2015 of mineral elements involved in the energy transition
- Fig. 19 : The grid mix in France on 30 March 2020: 19% of the power was exported
- Fig. 20 : The grid mix in Norway : domestic generation right and consumption left (2017)
- Fig. 21 : Transitions: how long do they take? How monotonous are they ?
- Table 1 : Taxonomy
- Appendix A : Objectives of the French ecological transition policy of 2015
- Appendix B : Death rates related to energy production technologiesRéférence de l'article : 502 DOI : https://doi.org/10.1051/mattech/2021005 En ligne : https://www.mattech-journal.org/articles/mattech/pdf/2020/05/mt200061.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35975
in MATERIAUX & TECHNIQUES > Vol. 108, N° 5-6 (2020) . - 26 p.[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22695 - Périodique Bibliothèque principale Documentaires Disponible MFA vs. LCA, particularly as environment management methods in industry : an opinion / Jean-Pierre Birat in MATERIAUX & TECHNIQUES, Vol. 108, N° 5-6 (2020)
[article]
Titre : MFA vs. LCA, particularly as environment management methods in industry : an opinion Type de document : texte imprimé Auteurs : Jean-Pierre Birat, Auteur Année de publication : 2020 Article en page(s) : 10 p. Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Analyse des flux de matières et d'énergie
Durée de vie (Ingénierie)
Industrie
MatériauxIndex. décimale : 304.2 Ecologie humaine : les activités sociales humaines et l'environnement. Pollution Résumé : MFA was born in the 1980s, independently, in various laboratories around the world. On the one hand, Industry was trying then to put numbers on its circular economy practices, while, on the other, Academia endeavored to construct a metaphor of natural ecology (BioGeoChemical Cycles [BGCC]) or of the metabolism of ecosystems to describe the activities of the anthroposphere, especially its material and the energy flows (and stocks). This article briefly reviews the early efforts of Usinor (now ArcelorMittal) in this area, in the framework of a program called “The Cycle of Iron” and points out what it was trying to achieve: basically, analyze and evaluate a true recycling rate (RR) of steel. MFA turned out to be potentially a more powerful tool than ad hoc models of materials circularity too and Industry left the leadership to academic groups to flesh out the new methodology to confront such difficult questions as the evaluation of a RR. Then the article conducts a kind of methodological and epistemological audit of the present status of MFA, positioning it in the wide framework of descriptions of material flows in space and time, and thus picturing it as a competing methodology to LCA. While the former is macro-scale, synchronic, broadly economy-oriented, the latter is micro-scale, diachronic, product and value chain-oriented, while both “report” to different communities, the Industrial Ecology community and the LCA community respectively, and more. Both schools of thoughts have been attending SAM conferences regularly, where they have been reporting their continuous search for new developments and their search for a better sustainability assessment of materials, products, industrial systems and economic activities of all kinds. The various contributions over the first 12 SAM events are analyzed. Finally, MFA and LCA are compared, feature by feature, in terms of the communities they serve and of their strengths and weaknesses. Unsurprisingly, the conclusion is that they are more complementary than competing with each other. Note de contenu : - Introduction
- Usinor's attempt at inventing MFA
- LCA vs. MFA
- Society and materials conferences
- MFA and various user communities
- Strengths and weakness of MFA
- ConclusionsRéférence de l'article : 503 DOI : https://doi.org/10.1051/mattech/2021004 En ligne : https://www.mattech-journal.org/articles/mattech/pdf/2020/05/mt200060.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35976
in MATERIAUX & TECHNIQUES > Vol. 108, N° 5-6 (2020) . - 10 p.[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22695 - Périodique Bibliothèque principale Documentaires Disponible Reinventing exergy as indicator for resource depletion impacts in LCA / Jens F. Peters in MATERIAUX & TECHNIQUES, Vol. 108, N° 5-6 (2020)
[article]
Titre : Reinventing exergy as indicator for resource depletion impacts in LCA Type de document : texte imprimé Auteurs : Jens F. Peters, Auteur Année de publication : 2020 Article en page(s) : 6 p. Note générale : Bibliogr. Langues : Anglais (eng) Tags : 'Epuisement des ressources' Exergie 'Evaluation d'impact' du cycle de vie' Dissipation Index. décimale : 333.7 Ressources naturelles et énergie : classer ici les ouvrages généraux sur l'environnement Résumé : While resource aspects are gaining increasing importance for the sustainability assessment of new technologies, the question of how to assess the depletion of abiotic resources is still controversially discussed. Different methodologies exist for their quantification within life cycle assessment (LCA). Among them, thermodynamic approaches have the advantage of considering aspects of absolute quantity (reserves or amount of a substance contained in total in earth’s crust) and of quality (concentration of the target element in the mined resource), making them a potentially appealing approach for assessing resource depletion. However, existing approaches are either far from the original thermodynamic idea of exergy or far too complex and not applicable for resource accounting. This work briefly discusses the suitability of exergy-based approaches for resource assessment, and then suggests a simple but comprehensive methodology for quantifying resource depletion related with the concept of chemical concentration exergy (MDPces). It provides a calculation approach for quantifying the MDPces and estimates the corresponding values for some representative key metals. Note de contenu : - INTRODUCTION : The concept of exergy - Limitations
- CHARTING THE WAY FORWARD
- TOWARDS AN APPLICABLE METHODOLOGY : Approach - Applicability
- Table : MDPces values for some selected elementsRéférence de l'article : 504 DOI : https://doi.org/10.1051/mattech/2021003 Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35977
in MATERIAUX & TECHNIQUES > Vol. 108, N° 5-6 (2020) . - 6 p.[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22695 - Périodique Bibliothèque principale Documentaires Disponible SME’s, energy efficiency, innovation : a reflection on materials and energy transition emerging from a research on SMEs and the practice of Energy Audit / Andrea Declich in MATERIAUX & TECHNIQUES, Vol. 108, N° 5-6 (2020)
[article]
Titre : SME’s, energy efficiency, innovation : a reflection on materials and energy transition emerging from a research on SMEs and the practice of Energy Audit Type de document : texte imprimé Auteurs : Andrea Declich, Auteur ; Gabriele Quinti, Auteur ; Paolo Signore, Auteur Année de publication : 2020 Article en page(s) : 10 p. Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Économie circulaire L'économie circulaire est une expression générique désignant un concept économique qui s'inscrit dans le cadre du développement durable et s'inspirant notamment des notions d'économie verte, d’économie de l'usage ou de l'économie de la fonctionnalité, de l'économie de la performance et de l'écologie industrielle (laquelle veut que le déchet d'une industrie soit recyclé en matière première d'une autre industrie ou de la même).
Son objectif est de produire des biens et services tout en limitant fortement la consommation et le gaspillage des matières premières, et des sources d'énergies non renouvelables ;
Selon la fondation Ellen Mac Arthur (créée pour promouvoir l'économie circulaire1), il s'agit d'une économie industrielle qui est, à dessein ou par intention, réparatrice et dans laquelle les flux de matières sont de deux types bien séparés ; les nutriments biologiques, destinés à ré-entrer dans la biosphère en toute sécurité, et des intrants techniques ("technical nutrients"), conçus pour être recyclés en restant à haut niveau de qualité, sans entrer dans la biosphère
Efficacité énergétique
Innovations -- Aspect social
Matériaux
Petites et moyennes entreprisesIndex. décimale : 658.02 Gestion des entreprises selon leur taille Résumé : The paper presents some results emerging from the EC funded INNOVEAS project, particularly from a study on the non-economic factors that prevent (or facilitate) the adoption of energy efficiency measures and energy audits by SMEs. This study and its results are relevant for a reflection on the role of SMEs for the adoption of new business practices and technologies (including materials) that are conducive to a green transition. Attention will be paid also to those obstacles and facilitating factors that are relevant for the promotion of the circular economy – which is also, in fact, a strategy for achieving energy efficiency. The paper is based on the view that materials are a special type of technology and, as such, are the result of a social construction process. From this angle, materials can be thought of also by considering the actors involved in the process of their development and use. The life cycle of materials, in particular, must be analyzed also considering the role that different actors play in it; not only the technical characteristics of the materials have to be considered, but also the social context of development and application of materials. Such assumptions can be used also for interpreting the role of the actors in the challenges that contemporary societies are facing, particularly the promotion of energy saving and of the circular economy and more generally the transition towards decarbonization and dematerialization. In this paper, the focus is on a particular type of actors, Small and Medium Enterprises (SMEs). They constitute a plethora of economic actors operating in numerous production sectors and at different levels of the value chains. SMEs orientations are important for achieving a better knowledge of the cycle of materials, especially in relation to the possibility of directing it towards the pursuit of environmental objectives such as energy saving and the circular economy. The paper stresses that considering the role of SMEs in such wide social and economic innovation process should illustrate peculiar aspects of the "internal" life of SMEs (culture, organizational skills, etc.) as well as the interaction with other actors within the context of operation of SMEs. Note de contenu : - Connections between energy efficiency, circular economy, and materials
- SMEs and energy efficiency measures : The importance of the context - Obstacles met by SMEs - Obstacles met by the actors working with SMEs - Some remarks about "drivers" to the practice of EEMs and EAs
- An interpretative framework
- Conclusion : obstacles to energy efficiency, obstacles to new materials
- Table 1 : Classification of barriers according to four categoriesRéférence de l'article : 505 DOI : https://doi.org/10.1051/mattech/2020036 En ligne : https://www.mattech-journal.org/articles/mattech/full_html/2020/05/mt200065/mt20 [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35978
in MATERIAUX & TECHNIQUES > Vol. 108, N° 5-6 (2020) . - 10 p.[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22695 - Périodique Bibliothèque principale Documentaires Disponible Environment 4.0 : How digitalization and machine learning can improve the environmental footprint of the steel production processes / Valentina Colla in MATERIAUX & TECHNIQUES, Vol. 108, N° 5-6 (2020)
[article]
Titre : Environment 4.0 : How digitalization and machine learning can improve the environmental footprint of the steel production processes Type de document : texte imprimé Auteurs : Valentina Colla, Auteur ; Costanzo Pietrosanti, Auteur ; Enrico Malfa, Auteur ; Klaus Peters, Auteur Année de publication : 2020 Article en page(s) : 11 p. Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Environnement -- Etudes d'impact
Industrie 4.0Le concept d’Industrie 4.0 correspond à une nouvelle façon d’organiser les moyens de production : l’objectif est la mise en place d’usines dites "intelligentes" ("smart factories") capables d’une plus grande adaptabilité dans la production et d’une allocation plus efficace des ressources, ouvrant ainsi la voie à une nouvelle révolution industrielle. Ses bases technologiques sont l'Internet des objets et les systèmes cyber-physiques.
Industries sidérurgiques
Intelligence artificielle
Neutralité carbone
NumérisationIndex. décimale : 670.427 Mécanisation, automatisation, robotisation des opérations Résumé : The concepts of Circular Economy and Industrial Symbiosis are nowadays considered by policy makers a key for the sustainability of the whole European Industry. However, in the era of Industry4.0, this results into an extremely complex scenario requiring new business models and involve the whole value chain, and representing an opportunity as well. Moreover, in order to properly consider the environmental pillar of sustainability, the quality of available information represents a challenge in taking appropriate decisions, considering inhomogeneity of data sources, asynchronous nature of data sampling in terms of clock time and frequency, and different available volumes. In this sense, Big Data techniques and tools are fundamental in order to handle, analyze and process such heterogeneity, to provide a timely and meaningful data and information interpretation for making exploitation of Machine Learning and Artificial Intelligence possible. Handling and fully exploiting the complexity of the current monitoring and automation systems calls for deep exploitation of advanced modelling and simulation techniques to define and develop proper Environmental Decision Support Systems. Such systems are expected to extensively support plant managers and operators in taking better, faster and more focused decisions for improving the environmental footprint of production processes, while preserving optimal product quality and smooth process operation. The paper describes a vision from the steel industry on the way in which the above concepts can be implemented in the steel sector through some application examples aimed at improving socio-economic and environmental sustainability of production cycles. Note de contenu : - A view from the steel sector
- Bridging the gap to the vision
- Enabling circular economy and industrial symbiosis through digital transformation
- Exemplar applications of advanced simulation and machine learning for monitoring and control of the environmental footpring
- Digitalization enables CE and IS in steel business : the next stepsRéférence de l'article : 507 DOI : https://doi.org/10.1051/mattech/2021007 En ligne : https://www.mattech-journal.org/articles/mattech/pdf/2020/05/mt200062.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35979
in MATERIAUX & TECHNIQUES > Vol. 108, N° 5-6 (2020) . - 11 p.[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22695 - Périodique Bibliothèque principale Documentaires Disponible Current and future aspects of the digital transformation in the European Steel Industry / Teresa Annunziata Branca in MATERIAUX & TECHNIQUES, Vol. 108, N° 5-6 (2020)
[article]
Titre : Current and future aspects of the digital transformation in the European Steel Industry Type de document : texte imprimé Auteurs : Teresa Annunziata Branca, Auteur ; Barbara Fornai, Auteur ; Valentina Colla, Auteur ; Maria Maddalena Murri, Auteur ; Eliana Streppa, Auteur ; Antonius Johannes Schröder, Auteur Année de publication : 2020 Article en page(s) : 10 p. Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Automatisation
Industrie 4.0Le concept d’Industrie 4.0 correspond à une nouvelle façon d’organiser les moyens de production : l’objectif est la mise en place d’usines dites "intelligentes" ("smart factories") capables d’une plus grande adaptabilité dans la production et d’une allocation plus efficace des ressources, ouvrant ainsi la voie à une nouvelle révolution industrielle. Ses bases technologiques sont l'Internet des objets et les systèmes cyber-physiques.
Industries sidérurgiques
NumérisationIndex. décimale : 670.427 Mécanisation, automatisation, robotisation des opérations Résumé : The technological transformation in the European steel industry is driven by digitalization, which has the potential to strongly contribute to improving production efficiency and sustainability. The present paper describes part of the work developed in the early stage of the project entitled “Blueprint ‘New Skills Agenda Steel’: Industry-driven sustainable European Steel Skills Agenda and Strategy (ESSA)”, which is funded by the Erasmus Plus Programme of the European Union. The project aims at achieving an industry driven, sustainable and coordinated blueprint for addressing the economic, digital and technological developments, as well as increasing energy efficiency and environmental demands through continuously update of qualification, knowledge and skill profiles of the workforce. On the one hand, main aspects of the current state of the technological transformation in the steel sector are described through the analysis of the main recent innovation projects and developments. On the other hand, survey results from a dedicated questionnaire addressed to the European steel companies are analyzed, providing an overview on the (planned) technological transformation affecting the steel sector. The existing levels of plant automation and the possible adoption of the new paradigm of Industry 4.0 are discussed, by also considering the possible impact on the workforce. Main results are that the steel industry foresees an implementation of almost all Industry 4.0 technologies not only for competitive but also environmental improvement. Because this is foreseen in an incremental way upskilling of the existing workforce is a precondition, not only because of recruitment difficulties on the employment market but also because the existing qualification and experience of the workplace is necessary to unfold the full potential of digital and green transformation. Note de contenu : - Structure of the questionnaire
- Results and discussion : Strategy - Technical aspects - Human resourcesRéférence de l'article : 508 DOI : https://doi.org/10.1051/mattech/2021010 En ligne : https://www.mattech-journal.org/articles/mattech/pdf/2020/05/mt200063.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35980
in MATERIAUX & TECHNIQUES > Vol. 108, N° 5-6 (2020) . - 10 p.[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22695 - Périodique Bibliothèque principale Documentaires Disponible
Exemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
22695 | - | Périodique | Bibliothèque principale | Documentaires | Disponible |