[article]
Titre : |
Analyse du cycle de vie d’un biocomposite |
Type de document : |
texte imprimé |
Auteurs : |
Antoine Le Duigou, Auteur ; Peter Davies, Auteur ; Christophe Baley, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
p. 143-150 |
Note générale : |
Bibliogr. |
Langues : |
Français (fre) |
Catégories : |
Composites à fibres -- Recyclage Composites à fibres végétales Fibres végétales Lin et constituantsLe lin cultivé (Linum usitatissimum) est une plante annuelle de la famille des Linaceae cultivée principalement pour ses fibres, mais aussi pour ses graines oléagineuses. Les fibres du lin permettent de faire des cordes, du tissu (lin textile pour ses qualités anallergiques, isolantes et thermorégulateurs), ou plus récemment des charges isolantes pour des matériaux de construction. Les graines sont utilisées pour produire de l'huile de lin pour l'industrie de l'encre et de la peinture, pour la consommation humaine et animale, à cause de sa richesse en oméga 3.
Le lin est une des rares fibres textiles végétales européennes. Elle a comme caractéristiques la légereté, la rigidité et la résistance et comme particularité d'être une fibre longue (plusieurs dizaines de centimètres), par rapport aux fibres courtes (coton, chanvre) ou moyennes (laine). Matériaux hybrides -- Analyse du cycle de vie Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
Outre l’impact sur le changement climatique généré par l’utilisation de ressources non renouvelables pour les activités humaines [1], l’épuisement des gisements de ressources fossiles est inéluctable. Un changement de manière de penser s’impose. Cet article présente l’analyse du cycle de vie d’un biocomposite fibres de lin/poly(L-Lactique) acide et d’un composite verre/polyester, de la fabrication en passant par la comparaison des propriétés mécaniques et la définition des épaisseurs équivalentes et sa fin de vie. L’impact environnemental global a été évalué grâce à un outil normalisé : l’Analyse de cycle de vie. Les biocomposites fibres de lin/PLLA, élaborés par film stacking, présentent des propriétés en traction comparables, à masse égale, à celles des composites verre/polyester notamment en ce qui concerne la rigidité. Outre le fait d’être compostables, les biocomposites fibres de lin/PLLA sont recyclables en fin d’usage. Enfin, l’impact du cycle de vie d’un biocomposites lin/PLLA est nettement inférieur à celui du composite verre/polyester pour les mêmes fonctions mécaniques. Le recyclage des biocomposites en fin d’usage permet de séquestrer la totalité du carbone présent dans le matériau et d’économiser les matières premières. La méthanisation permet une valorisation énergétique par l’intermédiaire de la production de biogaz et permet de séquestrer une partie du carbone inclus dans le biocomposite. |
Note de contenu : |
MATERIAUX ET METHODES
RESULTATS : - Comparaison des propriétés mécaniques en traction des composites
- Propriétés supplémentaires des biocomposites : le recyclage
- Evaluation de l'impact environnemental du cycle de vie d'un biocomposite et d'un composite verre/polyester : Du berceau au produit - Du berceau à la tombe. |
DOI : |
http://dx.doi.org/10.1051/mattech/2010021 |
En ligne : |
http://www.mattech-journal.org/fr/articles/mattech/pdf/2010/02/mt100059.pdf |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=9797 |
in MATERIAUX & TECHNIQUES > Vol. 98, N° 2 (2010) . - p. 143-150
[article]
|