Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Assessment of elastic properties of coatings by three-point bending and nanoindentation / Tao Zhou in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 8, N° 3 (05/2011)
[article]
Titre : Assessment of elastic properties of coatings by three-point bending and nanoindentation Type de document : texte imprimé Auteurs : Tao Zhou, Auteur ; Pulin Nie, Auteur ; Heping Lv, Auteur ; Qiulong Chen, Auteur ; Xun Cai, Auteur Année de publication : 2011 Article en page(s) : p. 355-361 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Elasticité
Flexion trois points
Nanoindentation
Pulvérisation thermique
Revêtements:PeintureIndex. décimale : 667.9 Revêtements et enduits Résumé : The elastic properties of a thermally sprayed coating were determined by a three-point bending (3PB) test and nanoindentation, but different results were obtained by the two methods. The microstructure revealed by scanning electron microscopy shows the existence of pores which decrease the overall resistance of the coating to elastic deformation. Therefore, the overall mechanical properties determined by the 3PB test are influenced by pores. On the other hand, the mechanical properties of the materials determined by nanoindentation are rarely influenced by pores, as indentations are normally made far away from pores. As a result, the Young’s modulus determined by the 3PB test is lower than that determined by nanoindentation. Selection of the method to determine the Young’s modulus of the coating must be carried out with careful consideration. Note de contenu : - EXPERIMENTAL DETAILS : Sample preparation - Mechanical tests and microstructure evaluation.
- COMPOSITE PLATE THEORY
- RESULTS : Young's modulus by 3PB test - Young's modulus by nanoindentation.DOI : 10.1007/s11998-010-9313-y En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-010-9313-y.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=11675
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 8, N° 3 (05/2011) . - p. 355-361[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 012971 - Périodique Bibliothèque principale Documentaires Disponible A study of the microstructure, micro abrasive wear and corrosion resistance of HVOF-sprayed, FeSiNICr-based alloy coating deposited on grey cast iron-relevance to automotive applications / M. Shunmuga Priyan in SURFACE COATINGS INTERNATIONAL, Vol. 95, 4 (08/2012)
[article]
Titre : A study of the microstructure, micro abrasive wear and corrosion resistance of HVOF-sprayed, FeSiNICr-based alloy coating deposited on grey cast iron-relevance to automotive applications Type de document : texte imprimé Auteurs : M. Shunmuga Priyan, Auteur ; P. Hariharan, Auteur Année de publication : 2012 Article en page(s) : p. 183-194 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Alliages
Anticorrosion
Automobiles -- Matériaux
Chrome
Dépôt par pulvérisation
Fer
NickelLe nickel est un élément chimique, de symbole Ni et de numéro atomique 28.
Le nickel est un métal blanc argenté qui possède un éclat poli. Il fait partie du groupe du fer. C'est un métal ductile (malléable). On le trouve sous forme combinée au soufre dans la millérite, à l'arsenic dans la nickéline.
Grâce à sa résistance à l'oxydation et à la corrosion, il est utilisé dans les pièces de monnaie, pour le plaquage du fer, du cuivre, du laiton, dans certaines combinaisons chimiques et dans certains alliages. Il est ferromagnétique, et est fréquemment accompagné de cobalt. Il est particulièrement apprécié pour les alliages qu'il forme.
Poudres
Pulvérisation thermique
Résistance à l'abrasion
Revêtement métallique
SiliciumIndex. décimale : 667.9 Revêtements et enduits Résumé : Thermally sprayed coatings that are based on FeSiNICr-related alloy powders are widely used to improve properties such as the surface hardness, the wear resistance and the corrosion resistance of a variety of coated metal substrate materials. For the current study, the FeSiNiCr-containing coating formulations were thermally sprayed onto a agrey cast iron substrate by the high velocity oxy fuel (HVOF) method under controlled conditions. The microstructure and micro abrasive wear performance of both the uncoates substrates and the coated substrates were characterized by optical microscopy as well as by scanning electron microscope (SEM). Note de contenu : - EXPERIMENTAL PROCEDURE : Material and coating preparation - Coating characterisation methods - Surface topography testing and evaluations - Electrochemical evaluation
- RESULTS AND DISCUSSION : Coating characterisation - Surface morphology of the coating - Micro hardness of the coating - X-ray diffraction analysis - TG/DTA - Wear mechanisms - Surface roughness-3D analysisEn ligne : https://drive.google.com/file/d/1_l9uODBJBkpbZquqKrGFHZNwFKP9i-4Q/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=15703
in SURFACE COATINGS INTERNATIONAL > Vol. 95, 4 (08/2012) . - p. 183-194[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 14076 - Périodique Bibliothèque principale Documentaires Disponible Thermal metal spraying exposed / David H. Deacon in PROTECTIVE COATINGS EUROPE (PCE), Vol. 4, N° 1 (01-02-03/2012)
[article]
Titre : Thermal metal spraying exposed : Why are we 'throwing the baby out with the bathwater' Type de document : texte imprimé Auteurs : David H. Deacon, Auteur Année de publication : 2012 Article en page(s) : p. 16-22 Langues : Anglais (eng) Catégories : Anticorrosion
Corrosion
Essais (technologie)
Essais de brouillard salin
Métaux -- Revêtements protecteurs
Pulvérisation thermique
Revêtement métalliqueIndex. décimale : 667.9 Revêtements et enduits Résumé : Thermal metal spraying (TMS) has been around and used extensively for protection of a range of steel structures and components, both large and small for very many years (over 65 in my own experience). My first personal experiences of TMS, both sealed and over painted with various paint systems, goes back to the 1960s when I became the first qualified Paint Technologist to join the British Iron and Steel Research Association (BISRA) and joined a team in the corrosion section of metallurgists, corrosion engineers and chemists.
One of my projects was to research the performance of TMS for my then Manager - john Stanners who together with his colleague Ken Chandler (who ran the Corrosion Advice Bureau at BISRA) were to give a paper to the European Corrosion Conference in the Hague. This project involved examining the test panels at all of the BISRA exposure sites in marine, industrial and rural exposure atmospheres and to report on the performance of the various systems under test, some of which had been exposed for over 10 years at that time.
As part of the exercise to establish the practical performance of TMS coatings, I also visited the workshop of the Great Ouse River Board (GORB) at Kings Lynn together with John Stanners. I then learnt that the GORB had setup its own TMS spray shop for the sluice and floodgate corrosion protection in the GORB area, as long as 1948. The work shop manager showed us four sluice gates around the Kings Lynn area and, although these had been immersed in fenland water and one with a marine salt water environment, the structures had lasted for between 15 and 18 years.Note de contenu : - Incredibly impressed
- Success and failure
- Established performance
- Testing coating
- Recent applicationPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=13624
in PROTECTIVE COATINGS EUROPE (PCE) > Vol. 4, N° 1 (01-02-03/2012) . - p. 16-22[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 13694 - Périodique Bibliothèque principale Documentaires Disponible Thermal spray - An innovative tool / Nitisha Mangesh Sidam in PAINTINDIA, Vol. LXVII, N° 10 (10/2017)
[article]
Titre : Thermal spray - An innovative tool Type de document : texte imprimé Auteurs : Nitisha Mangesh Sidam, Auteur Année de publication : 2017 Article en page(s) : p. 60-74 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosion
Caractérisation
Isolation électrique
Isolation thermique
Projection thermique
Pulvérisation thermique
Revêtements protecteursIndex. décimale : 667.9 Revêtements et enduits Résumé : Thermal Spray - is a generic term for a group of processes in which metallic, ceramic, cermet, and some polymeric materials in the form of powder, wire, or rod are fed to a torch or gun with which they are heated to near or somewhat above their melting point. The resulting molten or nearly molten droplets of material are accelerated in a gas strem and projected against the surface to be coated (i.e. the substrate). On impact, the droplets flow into thin lamellar particles adhering to the surface, overlapping and interlocking as they solidify. The total coating thickness is usually generated in multiple passes of the coating device. A major advantage of the thermal spray processes is the extremely wide variety of materials that can be used to make a coating, to apply a coating to a substrate without significantly heating it and also its ability in most cases, to strip and recoat worn or damaged coatings without changing the properties or dimensions of the part. Note de contenu : - SURFACE PROPERTIES
- COATING PROCESSES
- DEFINITION : Substrate materials
- COATING MATERIAL
- THERMAL SPRAY COATING PROCESSES : Conventional flame spray process - Electric arc wire spray - Plasma spray - High velocity oxy-fuel spray (HVOF) - Process comparison - Infrastructure (system requirements)
- COATING CHARACTERISTICS : Wear protection - Corrosion protection - Insulative coatings (Thermal/Electrical)
- POST PROCESSING : Mechanial post processing - Sealing - Post-Cot heat treatment
- COATING CHARACTERIZATION
- APPLICATIONS
- PRODUCTION APPLICATIONS : Hard chromium alternative - Textile machinery - Gas turbines - Printing industry - General industrial uses - Consumer goods - Automotive industry - Steel industry - Paper industry - Aerospace - Salvage and restorationEn ligne : https://drive.google.com/file/d/1O668Y2rEsBtmIEo7lE2j9Ip9UQMJVW_9/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=29726
in PAINTINDIA > Vol. LXVII, N° 10 (10/2017) . - p. 60-74[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 19478 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : Thermal spray-an innovative tool Type de document : texte imprimé Auteurs : Nitisha Mangesh Sidam, Auteur Année de publication : 2019 Article en page(s) : p. 55-72 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Dépôt par pulvérisation
Pulvérisation thermique
Système de pulvérisation (technologie)Index. décimale : 667.9 Revêtements et enduits Résumé : Thermal Spray - is a generic term fora group of processes in which metallic, ceramic, cermet, and some polymeric materials in the form of powder, wire, or rod are fed to a torch or gun with which they are heated to near or somewhat above their melting point. The resulting molten or nearly molten droplets of material are accelerated in a gas strem and projected against the surface to be coated (i.e. the substrate). On impact, the droplets flow into thin lamellar particles adhering to the surface, overlapping and interlocking as they sol idify. The total coating th ickness is usually generated in multiple passes of the coating device.
A major advantage of the thermal spray processes is the extremely wide variety of materials that can be used to make a coating, to apply a coating to a substrate without significantly heating it and also its abi I ity in most cases, to strip and recoat worn or damaged coatings without changing the properties or dimensions of the part.Note de contenu : - Surface properties
- Coating processes
- Definition
- Substrate materials
- Coating material
- CONVENTIONAL FLAME SPRAY PROCESSES : Wire flame spray - Powder flame spray - Electric arc wire spray - Plasma spray - High velocity oxy-fuel spray (HVOF)
- PROCESS COMPARISON
- INFRASTRUCTURE (SYSTEM REQUIREMENTS)
- COATING CHARACTERISTICS : Wear protection - Corrosion protection - Insulative conatings (thermal/electrical)
- POST PROCESSING : Mechanical post processing - Sealing - Post-coat heat treatment
- COATING CHARACTERIZATION
- APPLICATIONS
- PRODUCTION APPLICATIONS : Hard chromium alternative - Medical implants - Gas turbines - Printing industry - General industrial uses - Automotive industry - Aerospace - Salvage and restoration
- Fig. 1a : Chrome plated, 13/4 steel pelton turbine nozzle needle after service
- Fig. 1b : Nozzle needle with a chrome oxide coating to prevent wear
- Fig. 2 : Principle of thermal spraying
- Fig. 3 : Schematic diagram of a thermal sprayed coating
- Fig. 4a : Schematic diagram of the wire flame spray process
- Fig. 4b : Schematic diagram of the powder flame spray process
- Fig. 5 : Schematic diagram of the electric are wire spray process
- Fig. 6a : Schematic diagram of the plasma spray process
- Fig. 6b : Controlled atmosphere plasma spraying
- Fig. 7 : Schematic diagram of the high velocity oxy-fuel spray process (HVOF)
- Fig. 8 : Energy comparison of the spray processes
- Fig. 9 : Typical coating facility
- Fig. 10 : Arc wire spray coating of X40 steel
- Fig. 11 : HVOF spray coating of WC 12 (CoCr)
- Fig. 11 : A diagram depicting the manufacturing processes used to create rigid polyurethane foam insulation
- Fig. 12 : Self-fluxing coating
- Fig. 13 : Favorable coating geometries for coating
- Fig. 14 : Noses gear of an F5 Tiger with a WC/CoCr coating
- Fig. 16 : Various textile machinery components
- Fig. 17 : Coated gas turbine vanes
- Fig. 18 : Anilox printing roll with a laser engraved coating
- Fig. 19 : Bearing shaft with a babbitt coating
- Fig. 20 : Coated household steam iron soleplate
- Fig. 21 : Dual-RotaPlasma
- Fig. 22 : HVOF coating of a sink roll
- Fig. 23 : Coating after superfinishing
- Fig. 24 : Combustion chamber
- Fig. 25 : Repair procedure
- Fig. 26 : A modern LPPS high-volume production system for coating gas turbine blades
- Table 1a : Principal coating processed and characteristics
- Table 1b : Coating process comparison
- Table 2 : Common classes of thermal spray powder materialsEn ligne : https://drive.google.com/file/d/1nc1cUxqPY8LYnKkinctExmSc9kCOofUu/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32620
in PAINTINDIA > Vol. LXIX, N° 3 (03/2019) . - p. 55-72[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20966 - Périodique Bibliothèque principale Documentaires Disponible