Accueil
Détail de l'auteur
Auteur Goliath Beniah |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Accelerated corrosion testing for bisphenol-A non-intent metal packaging resin / Goliath Beniah in COATINGS TECH, Vol. 17, N° 8 (08/2020)
[article]
Titre : Accelerated corrosion testing for bisphenol-A non-intent metal packaging resin Type de document : texte imprimé Auteurs : Goliath Beniah, Auteur ; Linqian Feng, Auteur ; Jeffrey Clauson, Auteur ; Abraham Boateng, Auteur ; Hongkun He, Auteur ; Cameron L. Brown, Auteur ; Andrew T. Detwiler, Auteur Année de publication : 2020 Article en page(s) : p. 32-40 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Acétique, Acide L'acide acétique (du latin acetum) ou acide éthanoïque est un acide carboxylique de formule chimique : C2H4O2 ou CH3COOH.
L'acide acétique pur est aussi connu sous le nom d'acide acétique glacial. C'est un des plus simples des acides carboxyliques. Son acidité vient de sa capacité à perdre le proton de sa fonction carboxylique, le transformant ainsi en ion acétate CH3COO-. C'est un acide faible.
L'acide acétique pur est un liquide très faiblement conducteur, incolore, inflammable et hygroscopique. Il est naturellement présent dans le vinaigre, il lui donne son goût acide et son odeur piquante (détectable à partir de 1 ppm21).
C'est un antiseptique et un désinfectant.
L'acide acétique est corrosif et ses vapeurs sont irritantes pour le nez et les yeux.
Il doit être manipulé avec soin. Quoi qu'il n'ait pas été jugé cancérigène ou dangereux pour l'environnement, il peut causer des brûlures ainsi que des dommages permanents à la bouche, au nez, à la gorge et aux poumons. À certaines doses et en co-exposition chronique avec un produit cancérigène, son caractère irritant en fait un promoteur tumoral de tumeurs (bénignes et malignes)21. Ceci a été démontré expérimentalement chez le rat.
Aliments -- Emballages
Anticorrosifs
Anticorrosion
Bisphénol A
Electrochimie
Emballages métalliques
Essais accélérés (technologie)
Essais d'adhésion
Formulation (Génie chimique)
Métaux -- Revêtements
PolyuréthanesIndex. décimale : 667.9 Revêtements et enduits Résumé : Increasing awareness of environmental, health, and food safety issues, as well as increasing regulations on substances with potential health effects, are major driving forces for consumer behavioral changes. These behavioral changes propel the shift toward development of alternative products free from substances of concern. One such substance is Bisphenol-A (BPA), a chemical commonly found in the protective linings of food or beverage metal cans. BPA has undoubtedly become a major cause of concern, prompting serious examinations from various regulatory bodies across the world connecting BPA to adverse health effects.
Since 2015, France has issued a ban on BPA in all packaging, containers, and utensils intended to come into contact with food.1 As recently as 2018, the European Union published a regulation that further restricts the presence or use of BPA-containing substances in plastic food contact materials. The new regulation reduces the specific migration limit for BPA in varnishes and coatings for food contact applications by an order of magnitude (from 0.6 mg/kg to 0.05 mg/kg) over previous regulations.2,3 Although the U.S. Food and Drug Administration has not issued a complete ban on the use of BPA in food can lining applications, several states such as Maryland, Connecticut, and California have placed further restrictions on its presence in food cans. Given the increasing regulatory pressure, the demand for Bisphenol-A Non-Intent (BPA-NI) metal packaging coatings will continue to increase in years to come.Note de contenu : - Table 1 : Details of white PU formulation
- Table 2 : Details of gold phenolic PU formulation
- Fig. 1 : The progress of corrosion in organic coatings, relevant electrochemical circuits, and expected Bode plots at various stages of corrosion
- Fig. 2 : Frequency-dependent impedances of white PU coatings on flat panels made with a) Commercial Control coating and b) EMN-MP coating at zero hours and after 48h of exposure. The panels were first retorted with 3% acetic acid and then aged with 3% acetic acid solution
- Fig. 3 : Nyquist plots of Commercial Control and EMN-MP white PU coatings at zero hours and after 48h of exposure
- Fig. 4 : a) Magnitude of impedance at 0.1 Hz over time for white PU coatings exposed to 3% acetic acid, and b) comparison of corrosion resistance of Commercial Control coating and EMN-MP coating at the end of 48h of ewposure to 3% acetic acid
- Fig. 5 : Frequency-dependent magnitude of impedance of gold phenolic PU coatings on flat panels made with Commercial Control and EMN-MP resins after aging with 2% lactic acid solution for 36 days
- Fig. 6 : Nyquist plots of gold phenolic PU coatings on flat panels made with () EMN-MP and (b) Commercial Control resins after aging with 2% lactic acid solution for 36 days
- Fig. 8 : Progress of corrosion as examined by enamel rater for can lids coated with white PU coatings exposed to 5% acetic at 50°C over seven days of exposure
- Fig. 9 : Can lids after exposure to 5% acetic acid at 50°C for seven days and after tape adhesion testEn ligne : https://www.paint.org/wp-content/uploads/2021/09/Bisphenol-A-Non-Intent-Metal-Pa [...] Format de la ressource électronique : Html Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34448
in COATINGS TECH > Vol. 17, N° 8 (08/2020) . - p. 32-40[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21923 - Périodique Bibliothèque principale Documentaires Disponible Understanding BPA-non-intent resin technology in food contact metal packaging coatings / Linqian Feng in COATINGS TECH, Vol. 16, N° 6 (06/2019)
[article]
Titre : Understanding BPA-non-intent resin technology in food contact metal packaging coatings Type de document : texte imprimé Auteurs : Linqian Feng, Auteur ; Andrew Detwiler, Auteur ; Jeffrey Clauson, Auteur ; Abraham Boateng, Auteur ; Hongkun He, Auteur ; Goliath Beniah, Auteur ; Thilanga Liyana Arachchi, Auteur ; H. Williams Chip, Auteur Année de publication : 2019 Article en page(s) : p. 28-37 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Aliments -- Emballages
Anticorrosion
Bisphénol A -- Suppression ou remplacement
Couches minces
Emballages métalliques
Essais (technologie)
Essais de résilience
Evaluation
Formulation (Génie chimique)
Résistance chimique
Spectroscopie d'impédance électrochimiqueIndex. décimale : 667.9 Revêtements et enduits Résumé : Consumer and regulatory pressure to replace bisphenol-A (BPA)-based materials in food contact metal packaging coatings has increased in recent years. Regardless of the controversy around BPA, consumers expect canned foods to be free of substances perceived to have negative health impacts while maintaining current shelf life and flavor characteristics. To address the market needs, formulators must innovate to deliver BPA-non-intent (BPA-NI) solutions that can meet or exceed the performance of BPA-based materials. This presents a challenge with regard to improving the resistance to food sterilization and stability during pack testing, and simultaneously balancing mechanical performance that allows the BPA-NI coating to withstand the aggressive canning process.
One response to these technical challenges has been the development of BPA-NI polyester resin technology through innovation on a monomer basis. This monomer innovation provides protective performance attributes such as resistance to corrosion and chemical attack, while enabling flexibility and adhesion through innovative resin and formulation design. Fundamental techniques such as electrochemical impedance spectroscopy (EIS) and cathodic disbonding were employed in combination with industrial fitness-for-use evaluations to demonstrate the improved protective barrier properties of novel non-BPA resins in formulated coatings. In addition, hydrophobicity and interfacial properties were studied to understand the impact of resin structure on coating performance from both experimental and computational perspectives. Applying this suite of methods and analysis builds strong structure-property correlations as part of a resin development strategy for novel non-BPA resins in metal packaging coating applications.Note de contenu : - EXPERIMENTAL PROCEDURES : Materials and sample preparation - Testing and evaluations (Electrochemical impedance spectroscopy (EIS) - Cathodic disbonding test - Food simulants and retord) - Computational modeling
- RESULTS AND DISCUSSION : EIS and corrosion mechanisms - Stage zero : Dry film - Stage 1 : Foodsimulant absorption - Stage 2 : Corrosion initiation - Stage 3~4 : Pore/breakthrough formation and delamination - Time-based corrosion resistance - Interface and adhesion
- Fig. 1 : Hydrolysis of model dihexanoate ester (hexanoate-glycol-hexanoate) compounds at 130°C
- Fig. 2 : 2—(a) Cathodic disbonding schematic and (b) lab setup of cathodic disbonding experimental setup
- Fig. 3 : Equivalent circuit model corresponding to a Bode plot with no time-constant (Stage zero corrosion)
- Fig. 4 : Equivalent circuit model corresponding to one time-constant in a Bode plot (Stage I corrosion)
- Fig. 5 : Equivalent circuit model corresponding to two time-constant (Stage II corrosion)
- Fig. 6 : Equivalent circuit model corresponding to a coated metal with Warburg character (Stage III ∼ IV corrosion). Schematics (a) and (b) correspond to equations (5) and (6), respectively
- Fig. 7 : Effect of exposure time on the EIS Bode plot for low-Tg low Mn Control B based clear PU
- Fig. 8 : EIS Bode plot to compare Resin A vs Control A in clear PU formulation, as well as Resin A in gold benzoguanamine phenolic after 5 h of exposure in LAS food simulant
- Fig. 9 : ime-based corrosion resistance of white PU coatings formulated with Control A, Control B, Resin A, and Resin B resins in 2% lactic acid food simulant for (a) 1st 48-h interval and (b) 2nd 48-h interval. Ten hours of relaxation time was given before the 1st and 2nd test intervals. Corrosion resistance is identified by the impedance value at 0.1 Hz
- Fig. 10 : A comparison of corrosion resistance of white PU coatings formulated with Control A, Control B, Resin A, and Resin B resins after 106 h, in 2% lactic acid food simulant
-Fig. 11 : (a) LogP values calculated for glycol (G1)-terephthalic acid (T)-glycol (G2) trimer model compounds, where EG=ethylene glycol, BG=butylene glycol, PG=propylene glycol, NPG=neopentyl glycol, DG=diethylene glycol. (b) Hildebrand solubility parameters calculated from molecular dynamics simulations. The color codes are used to rate the values, where Green=smallest value and Red=greatest value
- Fig. 12 : EIS bode plot to compare Resin A vs Control A in clear PU formulation after 12 days of exposure in LAS food simulant
- Fig. 13 : Images of clear PU coatings formulated with Resin A and Control A (a) after 3% acetic acid retort and (b) after cathodic disbonding test whereby 5V was applied for 60 sec
- Fig. 14 : Quantifying cathodic disbonding failures of Control A-based clear PU coatings through pixels counting
- Table 1 : Details of BPA-NI polyestser resins utilized in this study
- Table 2 : Details of formulation components utilized in this study
- Table 3 : Formulation details of gold benzoguanamine phenolic formulation
- Table 4 : Formulation details of white and clear PU formulationsEn ligne : https://drive.google.com/file/d/1GM1X2P5qhHB9ENgQzeyxlyuJg2J5yzEO/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32719
in COATINGS TECH > Vol. 16, N° 6 (06/2019) . - p. 28-37[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21023 - Périodique Bibliothèque principale Documentaires Disponible