[article]
Titre : |
Optimizing laser-based micro-cutting for PMMA microfluidic device fabrication: thermal analysis and parameter optimization |
Type de document : |
texte imprimé |
Auteurs : |
Mst. Nasima Bagum, Auteur ; Md. Ahsan Habib, Auteur ; Choudhury Abul Anam Rashed, Auteur ; Md. Mehedi Hasan Kibria, Auteur ; Syeda Kumrun Nahar, Auteur |
Année de publication : |
2024 |
Article en page(s) : |
p. 220-236 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Analyse thermique Logiciels Microfluidique Polyméthacrylate de méthyleLe poly(méthacrylate de méthyle) (souvent abrégé en PMMA, de l'anglais Poly(methyl methacrylate)) est un polymère thermoplastique transparent obtenu par polyaddition dont le monomère est le méthacrylate de méthyle (MMA). Ce polymère est plus connu sous son premier nom commercial de Plexiglas (nom déposé), même si le leader global du PMMA est Altuglas International9 du groupe Arkema, sous le nom commercial Altuglas. Il est également vendu sous les noms commerciaux Lucite, Crystalite, Perspex ou Nudec. Usinage par laser
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
Laser processes have gained popularity in microfluidic device fabrication. This study aims to determine the optimal parameters for laser-based micro-cutting to achieve the desired width, depth, profile, and material removal, considering the thermal properties of PMMA. A CNC CO2 laser was used, and 29 trials tested various speed and power combinations. Two theoretical models based on trial results focused on depth and width. COMSOL Multiphysics FEA software estimated surface temperature. Theoretical depth estimation matched experimental data more accurately when the P/S ratio was below 0.15 and the scanning speed was set at 500 mm/s or 750 mm/s. At 500 mm/s, width estimation was most accurate, up to 30 W. At 750 mm/s, experimental width exceeded predictions. Material removal increased proportionally with increasing P/S ratio, but beyond a threshold of 0.15, material removal remained nearly constant despite rising heat input. Laser-cut track shape varied, resembling a ‘U’ at lower and a ‘V’ at higher ratios. The groove shape transitioned from ‘U’ to ‘V’ when the temperature surpassed 1200 K. A V-shaped groove required a temperature exceeding 1500 K. Optimization confirmed a microchannel depth of 0.197 mm, width of 0.256 mm, and ‘U–V’ channel shape achievable at 30 W and 200 mm/s scanning speed, with a surface temperature of 1325 K. |
Note de contenu : |
- EXPERIMENTAL SETUP, MATERIALS AND METHODS : Thermal model to estimate temperature using finite element analysis - Depth and width estimation
- RESULTS AND ANALYSIS : The effect of laser power and scanning speed ratio on engraving depth - The effect of the ratio of laser power and scanning speed on engraving width - Relationship of P/Ss ratio, available heat, surface temperature, and material removal - The track shape and temperature - Regression model of depth, width, and temperature |
DOI : |
https://doi.org/10.1515/ipp-2023-4408 |
En ligne : |
https://drive.google.com/file/d/1LnSZxHQdLRJw2JiH3B7IQjEQ3qfQuG9v/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=40865 |
in INTERNATIONAL POLYMER PROCESSING > Vol. 39, N° 2 (2024) . - p. 220-236
[article]
|