Accueil
Détail de l'auteur
Auteur Ajay Chaurasiya |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
[article]
Titre : Anticorrosive self healing coatings Type de document : texte imprimé Auteurs : Ajay Chaurasiya, Auteur Année de publication : 2020 Article en page(s) : p. 56-82 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosifs
Anticorrosion
Catalyseurs
Emulsification
Métathèse (chimie)
Métaux -- Revêtements protecteurs
Microcapsules
Monomères
Nanocapsules
Passivité (Chimie)
Polymérisation
Revêtement autoréparant
Revêtements organiquesIndex. décimale : 667.9 Revêtements et enduits Résumé : Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems. Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest. Notably, the worldwide cost of corrosion has been year estimated to be nearly $300 billion per year. Recent studies on self-healing polymers have demonstrated repair of bulk mechanical damage as welI as dramatic increases in the fatigue life. Non-metallic (based on polymers or oxides) and metallic protective coatings are used to protect metal products against the harmful action of the corrosion environment Various approaches for achieving healing functionality encapsulation have been demonstrated, including reversible chemistry, networks, microvascular nanoparticle phase separation, poly-ionomers, fibres hollow and separation. monomer phase. The majority of these systems, however, have serious chemical and mechanical limitations, preventing their use as coatings. Modem engineered coatings are highly optimized materials in which dramatic modifications of the coating chemistry are unlikely to be acceptable. Here, we describe a generalized approach to self-healing polymer-coating systems, and demonstrate its effectiveness for both model and industrial ly important coating systems. Note de contenu : - Definition of self-healing
- Design strategies
- Release of healing agents
- Microcapsule embedment
- Hollow fiber embedment
- Microvascular system
- Reversible cross-links
- Diels-Alder (DA) and retro-DA reaction
- Ionomers
- Supramolecular polymers : Miscellaneous technologies - electrohydrodynamics
- CONDUCTIVITY : Shape memory effect
- Nanoparticle migrations
- Co-deposition
- Self-healing corrosion protection coatings polymeric coatings
- Protection of mild steel
- Protection of aluminium alloy
- Protection of magnesium alloy
- Coatings containing micro-nanocapsules
- Hybrid-oxide coatings
- Other self-healing coatings
- Self-healing process
- experimental analysis for cross cut corrosion resistance test
- Others applications
- Fig. 1 : Schematic representation of self-healing concept using embedded microcapsules
- Fig. 2 : Light microscopic picture of encapsulated DCPD and Grubb's catalyst
- Fig. 3 : Ring opening metathesis polymerization of DCPD
- Fig. 4 : Optical micrographs of hollow glass fibers
- Fig. 5 : Schematic representation of sel-healing concept using hollow fibers
- Fig. 6 : Schematic showing self-healing materials with 3D microvascular networks
- Fig. 7 : Schematic showing formation of highly cross-Iinked polymer (3M4F) using a multi-diene (four furan moieties, 4F) and multi-dienophile (three maleimide moieties, 3M) via DA reactions
- Fig. 8 : Chemical structure of functionalized maleimide and furan monomers
- Fig. 9 : Thermally reversible cross-linking reaction between TMI and TF through DA and retro-DA reactions
- Fig. 11 : Preparation of thermally reversible polyamides
- Fig. 12 : Schematic showing reversible ionic interactions
- Fig. 13 : Examples of supramolecular polymers from the literature : main-chain supramolecular polymers and side-chain supramolecular polyemrs
- Fig. 17 : Polymeric bis-terpyridine-metal complex (charge and anions omitted)
- Fig. 18 : Schematic showing electrohydrodynamic aggregation of particles
- Fig. 19 : Schematic showing conductive self-healing materials
- Fig. 20 : Representative three-dimensionsl profiles of a spherical indent at load of 15 N fresh indent and after healing above the austenite finish temperature
- Fig. 21 : Schematics showing electrolytic co-deposition of microcapsules (or mesoporous nanoparticles containing corrosion inhibitors) with metal ions
- Fig. 22 : Schematic illustration of a crack in the epoxy coating
- Fig. 23 : Schematic representation of the self-healing effect of the TiO, particle polymer composite coating
- Fig. 24 : Schematic Illustration of self healing zipper-like mechanism
- Fig. 25 : Schematic Self-healing mechanism of polyelectrolyte multilayers
- Fig. 25 : Schematic shows how a capsule is created
- Fig. 26 : Schematic shows structure of silane film
- Fig. 27 : Epoxy with control, epoxy with corrosion inhibitor and epoxy with self healing additives
- Fig. 28 : Schematic showing the reflow effect of self-haling clear coatsEn ligne : https://drive.google.com/file/d/1Z-i4m7ZBZI117NIGydOCioBCW5SAUQyz/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34661
in PAINTINDIA > Vol. LXX, N° 9 (09/2020) . - p. 56-82[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22359 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : Auto-deposition coating Type de document : texte imprimé Auteurs : Vikesh Kumar Singh, Auteur ; Ajay Chaurasiya, Auteur Année de publication : 2017 Article en page(s) : p. 117-130 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Acides carboxyliques
Ateliers de peinture industrielle -- Nettoyage
Autodéposition chimique
Dépôt électrolytique
Dioxyde de titane
Formulation (Génie chimique)
Miniémulsions
Oléique, AcideL'acide oléique vient du latin oleum et veut dire huile. C'est le plus abondant des acides gras monoinsaturés à chaîne longue dans notre organisme. Sa formule chimique brute est C18H34O2 (ou CH3(CH2)7CH=CH(CH2)7COOH). Son nom IUPAC est acide cis-9-octadécénoïque, et son nom court de lipide est 18:1 cis-9. La forme saturée de cet acide est l'acide stéarique.
On le symbolise par les nombres 18:1 pour indiquer qu'il possède 18 atomes de carbone et une liaison éthylénique. Pour indiquer la position de la double liaison, on préfère indiquer le nombre de carbones entre le dernier carbone (n° 18) et le carbone où commence la double liaison (n° 9), d'où 18 - 9, qu'on écrit n - 9, en désignant par n le nombre de carbones de la chaîne. L'acide oléique est donc un acide gras insaturé, plus précisément monoinsaturé.
La double liaison agit sur la forme de la molécule et des triglycérides qu’elle forme avec le glycérol. Comme la molécule ne peut pas pivoter autour de C = C, la chaîne est beaucoup moins flexible que l’acide stéarique et ne peut pas former de boule. Les molécules des esters de cet acide sont beaucoup moins compactes que la tristéarine: ces sont des huiles.
À la température de notre corps c'est un liquide (huile), qui ne se solidifie qu'à 13,4 °C.
Polymères -- Synthèse
Polymérisation
Résistance à l'hydrolyse
Séchage
VinyleIndex. décimale : 667.9 Revêtements et enduits Résumé : Auto-deposition is faster and more environmentally responsible than conventional coating processes; however, a typical seven-stage auto-deposition process still requires several cleaning stages. Recent advances are pushing auto-deposition technology past this boundary to offer manufacturers and coaters a coating solution that lowers the environmental impact even further, while also reducing the overall manufacturing production footprint and increasing efficiency in the assembly process. Note de contenu : - Comparison with ed coat
- A safer, more efficient process
- Higher performance with less environmental impact
- Continued advances
- Chemical concepts to back up auto-deposition
- Objectives behind invention
- Deposition mechanism : Iron dissolution - Deposition - Auto-deposition sequence - An auto-deposition bath contains
- Where it wets- it coats
- Final sealing rinse
- Curing
- Coating properties of typical auto-deposition systems
- Equipment considerations : Coating bath control parameters
- Formulating principles : Radical polymerization – Formulation basics – Acidic composition (aqueous - Alkaline composition
- These alkaline compositions are more suitable for the non steel surfaces typical compositions : Auto-deposition composition and process with acrylic terpolymer coating - The disperse resin comprising the organic coating-forming component in this composition is a polymer comprising
- Synthesis of a water based titanium dioxide polymer particles via mini-emulsion : Designing the synthetic route - Finding a stable precursor system
- Carboxylic acids as legands : Oleic acid : Acrylic and methacrylic acid
- General remark on the hydrolytic stability of alkoxide precursor molecule
- Hydrolytic stability within vinylic monomer mixture
- Formation of miniemulsion using oleic acid along with vinylic monomer system
- Modification using increased tio2 loading
- Polymerization process
- Drawbacks associatedEn ligne : https://drive.google.com/file/d/1aOIMQzuZj4o1pi6tkDabb_U6WYKqqhje/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=29339
in PAINTINDIA > Vol. LXVII, N° 9 (09/2017) . - p. 117-130[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 19295 - Périodique Bibliothèque principale Documentaires Disponible