Titre : |
Investigating the effect of glass flakes on performance of high-build epoxy coating for splash zone application |
Type de document : |
texte imprimé |
Auteurs : |
Nirmalya Dey, Auteur ; Dhembare Dhembare, Auteur |
Année de publication : |
2022 |
Article en page(s) : |
p. 16-22 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Adhésion Anticorrosifs Anticorrosion Charges (matériaux) Epoxydes Formulation (Génie chimique) Métaux -- Revêtements protecteurs Particules (matières) Peinture -- Propriétés physiques Revêtements -- Propriétés mécaniques:Peinture -- Propriétés mécaniques Revêtements organiques Rhéologie Test d'immersion Verre Viscosité
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
Glass flake epoxy coatings are most commonly used to protect splash zone areas of offshore assets. The splash zone area is a highly corrosive area due to exposure to the wet and dry atmospheric cyclic process. In addition, splash zones and heavy-duty decks also experience high impact and abrasion which can cause faster loss of integrity of non-glass flake coatings. Glass flakes (GF) impart unique properties to epoxy coatings when compared with traditional or granular fillers. Level of loading and aspect ratio of GF in the formulation has a critical effect on coating performance. Hence, high level of caution needs to be taken while choosing GF, considering its particle size and thickness. In this paper, the changes in physical, mechanical, barrier and anticorrosion properties with variation of type and dosage of GF in high-build pigmented epoxy coatings for splash zone areas, are investigated. Electrochemical impedance spectroscopy (E15) and water vapour transmission (WVT) tests were used for checking performance of coatings related to barrier protection. The results of EIS correlate well with those of WVT rate measurement and the SEM images were found to be helpful for understanding the GF orientation in the matrix. From the whole study it was concluded that the GF of higher flake size and aspect ratio and at 10% loading level in the coating formulation give the best barrier property, whereas GF with lower flake size and aspect ratio and at 10% loading level give the best corrosion resistance, mechanical strength and physical properties like viscosity build up and sag resistance. The valuable information derived from these experiments is expected to generate better insight into the influence of GF types and their loading level on performance parameters of high-build epoxy coatings. |
Note de contenu : |
- INTRODUCTION : Why GF ? - Chemistry of GF - Type of glass
- EXPERIMENTAL : Materials - Methods - Surface morphology of paint fils by SEM - Physical properties of liquid paints samples - Mechanical properties - Barrier properties - Chemical immersion test - Corrosion resistance
- RESULTS AND DISCUSSION : Surface morphology of GF in the epoxy coating by SEM - Physical properties of liquid paint - Results of mechanical test of the dried coating - Evaluation of barrier properties - Result of immersion resistance and corrosion resistance
- Table 1 : Physical characteristics of resins
- Table 2 : Physical and chemical properties of different glass flakes
- Table 3 : Formulation parameters of 2K splash zone epoxy coating
- Table 4 : Percentage of GF used in experiments
- Table 5 : Viscosity measured by penetrometer
- Table 6 : Effect of GF on sag resistance of coating
- Table 7 : Initial pull off adhesion value
- Table 8 : Weight loss in abrasion resistance test
- Table 9 : Weight loss in water vapour transmission test
- Table 10 : Impedance reading of experiments |
En ligne : |
https://drive.google.com/file/d/1rEbykEosuPfh2BYnL3KSsBRwdxYew7Zn/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37389 |
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 212, N° 4674 (04/2022) . - p. 16-22