[article]
Titre : |
Improvement of mechanical and biological properties of PLA/HNT scaffolds fabricated by foam injection molding : skin layer effect and laser texturing |
Type de document : |
texte imprimé |
Auteurs : |
Meltem Eryildiz, Auteur ; M Altan, Auteur ; S. Odabas, Auteur |
Année de publication : |
2021 |
Article en page(s) : |
p. 564-576 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Analyse thermique Biodégradation Caractérisation HalloysiteL'halloysite-7Å est une espèce minérale du groupe des silicates sous-groupe des phyllosilicates de formule Al2Si2O5(OH)4 avec des traces de : Ti ; Ca ; Na ; K ; Fe ; Cr ; Mg ; Ni ; Cu. Ses principaux constituants, outre l'oxygène, sont l’aluminium (20,90 %), le silicium (21,76 %), et l’hydrogène (1,56 %). Ingénierie tissulaire Mouillabilité Mousses plastiques Mousses plastiques -- Moulage par injection Mousses plastiques -- Propriétés mécaniques Mousses plastiques -- Propriétés thermiques Nanotubes Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique. Polymères en médecine Texturation par laser
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
Polylactic acid (PLA) is one of the important materials for orthopedic regenerative engineering applications due to its biodegradability and biocompatibility. Nonetheless, PLA may show insufficient mechanical strength for some bone replacement applications. Halloysite nanotube (HNT) is one of the non-toxic, biocompatible reinforcement for improving mechanical and biological properties of PLA for tissue engineering applications. In this study, PLA/HNT scaffolds were prepared by chemical foam injection molding process. Laser surface texturing was applied on the skin layer of the injection molded scaffolds to enhance the cell viability and hydrophilicity of PLA. The effects of HNT concentration on cell morphology, mechanical and thermal properties, cell viability and biodegradation profile of the scaffolds were studied. The results demonstrated that cell viability increased by 43% in PLA/HNT scaffolds compared to neat PLA. Hydrophilicity of the scaffolds that have thick skin layer was enhanced by the laser surface texturing in two different designs and consequently, cell viability increased about 16%. Surface roughness measurements and water contact angle measurements have verified this result. |
Note de contenu : |
- EXPERIMENTAL : Materials - Scaffold fabrication - Texture preparation – Characterization
- RESULTS AND DISCUSSION : Thermal properties - Foam morphology - Texture properties of the scaffolds - Surface wettability - Mechanical properties - Cell proliferation studies - Biodegradability
- Table 1 : The processing setups for foam injection molding
- Table 2 : Thermal properties determined from DSC
- Table 3 : Decomposition temperatures of PLA and PLA/HNT nanocomposites
- Table 4 : Foamed sample results
- Table 5 : Mechanical properties of PLA based composite scaffolds
- Table 6 : Mechanical properties of human tissues (Mi et al., 2013)
- Table 7 : Biodegradation rate (%) of the scaffolds |
DOI : |
https://doi.org/10.1515/ipp-2020-4090 |
En ligne : |
https://drive.google.com/file/d/1unWMpP-w6mD9YE-WVKwpTGG2gY0TxM2Q/view?usp=shari [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=36523 |
in INTERNATIONAL POLYMER PROCESSING > Vol. 36, N° 5 (2021) . - p. 564-576
[article]
|