Titre : |
DSC and TGA characterization of free and surface water of colloidal unimolecular polymer (CUP) particles for coatings applications |
Type de document : |
texte imprimé |
Auteurs : |
Peng Geng, Auteur ; Sagar Vijay Gade, Auteur ; Michael Roy Van de Mark, Auteur |
Année de publication : |
2021 |
Article en page(s) : |
p. 143-154 |
Note générale : |
Bibliogr. |
Langues : |
Américain (ame) |
Catégories : |
Analyse thermique Caractérisation Densité Eaux de surface Formulation (Génie chimique) Granulométrie Poids moléculaires Polymères -- Synthèse Polymères unimoléculaires colloïdaux Revêtements en phase aqueuse Revêtements organiques Rhéologie Stabilité gel-dégel Taille des particules Thermogravimétrie
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
Colloidal unimolecular polymer (CUP) particles are spheroidal nano-scale and 3–9 nm that can be easily designed and controlled. The formation of CUP involves simple synthesis and water reduction. These nanoparticles have charged hydrophilic groups on the surface and are surrounded by a layer of surface water that does not freeze until very low temperature. CUPs have very high surface area per gram, which gives them a high nonfreezing water content. The CUP system is free of surfactant and has zero VOC, exhibiting great potential for coatings applications. The amount and thickness of the surface water were determined by differential scanning calorimetry (DSC) using the heat of fusion. The solution density and knowledge of the resin density and the composition of the CUP solution were used to determine the density of surface water. The evaporation rate of free water and surface water in CUP solutions were investigated by thermogravimetric analysis (TGA) and showed the effect of CUP on the evaporation rate. CUP as an additive to give freeze thaw stability, wet edge retention and open time improvements were explored. Excellent performance in freeze thaw, wet edge time improvement and more open time was found. The CUP system offers an excellent alternative to form zero VOC waterborne coatings. |
Note de contenu : |
- EXPERIMENTAL : Polymer synthesis - Absolute molecular weight of copolymers - Density of dry CUPs - Density of CUP solutions - Acid number (AN) - Viscosity of CUP solutions - Particle size of CUP - Differential scanning calorimetry - Paint formulation - Freeze thaw stability - Wet edge retention - Paint viscosity - Thermogravimetric analyzer
- RESULTS AND DISCUSSION : Heat of fusion - Freeze-thaw stability - Evaporation rate
- Table 1: Polymer synthesis, the amount of materials used
- Table 2 : Molecular wieght, particle size, acid number and density of the polymers
- Table 3 : Weight fraction of free water and CUP polymers
- Table 4 : Paint formulation of the master batch
- Table 5 : Weight per gallon, % solids by weight, % solids by volume and PVC of the paint
- Table 6 : Freeze thaw stability (KU viscosity)
- Table 7 : Wet edge retention and open time |
DOI : |
https://doi.org/10.1007/s11998-020-00388-3 |
En ligne : |
https://link.springer.com/content/pdf/10.1007/s11998-020-00388-3.pdf |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35358 |
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 18, N° 1 (01/2021) . - p. 143-154