Titre : |
Smart coating with microencapsulation technology |
Type de document : |
texte imprimé |
Auteurs : |
Meghana Rajaram Rode, Auteur |
Année de publication : |
2019 |
Article en page(s) : |
p. 53-67 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Amines Une amine est un composé organique dérivé de l'ammoniac dont certains hydrogènes ont été remplacés par un groupement carboné. Si l'un des carbones liés à l'atome d'azote fait partie d'un groupement carbonyle, la molécule appartient à la famille des amides. Découvertes en 1849, par Wurtz les amines furent initialement appelées alcaloïdes artificiels.
On parle d'amine primaire, secondaire ou tertiaire selon que l'on a un, deux ou trois hydrogènes substitués.
Par exemple, la triméthylamine est une amine tertiaire, de formule N(CH3)3.
Typiquement, les amines sont obtenues par alkylation d'amines de rang inférieur. En alkylant l'ammoniac, on obtient des amines primaires, qui peuvent être alkylées en amines secondaires puis amines tertiaires. L'alkylation de ces dernières permet d'obtenir des sels d'ammonium quaternaire.
D'autre méthodes existent : 1. Les amines primaires peuvent être obtenues par réduction d'un groupement azoture, 2. Les amines peuvent aussi être obtenues par la réduction d'un amide, à l'aide d'un hydrure, 3. L'amination réductrice permet l'obtention d'amines substituées à partir de composés carbonylés (aldéhydes ou cétones), 4. Les amines primaires peuvent être obtenues par la réaction de Gabriel. Anticorrosifs Anticorrosion Encapsulation Epoxydes Formulation (Génie chimique) Matériaux intelligents Microémulsions Polyisocyanates Polymères à terminaison amine Revêtements
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
While there are various types of smart coating available, this paper is based on smart coating with pH-triggered release microcapsules which is one of the advanced techniques in coating system. These microcapsules can be incorporated into various coating systems for corrosion detection, protection and self-repair of mechanical coating damage. This paper will present the results from progress made to date in the controlled release properties of these microcapsules as well as in their corrosion indication and corrosion inhibition function. This paper covers the recent progress made in the encapsulation process, the characterization of these microcapsules as well as results showing the controlled release function & different techniques used for microencapsulation & its applications. |
Note de contenu : |
- INTRODUCTION : Structure of microcapsules - Core - Shell - Morphology of microcapsules
- PAINT FORMULATION WITH MICROENCAPSULATION : Compatibility study between paint formulation and the microcapsules - Solvents compatibility test - Formulation stability test - Microcapsules effect on coating adhesion - Paint formula and coating process effect on microcapsules - Microencapsulation process
- Oil - in - water microemulsion process - Water - in - oil microemulsion process
- ENHANCING COATING FUNCTIONALITIES WITH MICROCAPSULES
- COMMONLY USED COAT MATERIALS IN MICROENCAPSULATION : Coating material properties
- APPLICATIONS OF MICROENCAPSULATION TECHNOLOGY IN COATING SYSTEM : Corrosion control in coating - Self-healing coating based on microcapsules - Novel responsive surfaces based on active hybrid coatings utilizing encapsulation technologies - Encapsulated antifreeze agent for anti-ice coatings - Self-healing concrete with a microencapsulated healing agent
- CONTROLLED RELEASE OF THE MICROCAPSULES : pH controlled release properties of the microcapsules - Controlled release of microcapsule content at the onset of corrosion
- Fig. 1a : Schematic of microcapsule
- Fig. 1b : Shell categories
- Fig. 2 : Morphology of microcapsule
- Fig. 3 : PATTI adhesion test results of various commercial paint systems
- Fig. 4a : Microcapsules appear dispersed and stable inside the epoxy amine coating
- Fig. 4b : Color change observed when microcapsules in dry paint were exposed to basic pH conditions
- Fig. 5a : Steps involved in the interfacial polymerization of oil-in- water microemulsion process for making oil core microcapsules (oil is shown in yellow and water in blue)
- Fig. 5b : Steps involved in the interfacial polymerization of water-in-oil microemulsion process for water core microcapsules. Oil is shown in yellow and water in blue
- Fig. 6 : Schematic diagram showing pathways for microcapsule incorporation into coating
- Fig. 7 : The central component of the smart coating system : pH sensitive microcapsules which break down under basic pH conditions
- Fig. 8 : Smart coating with pH sensitive microcapsules for corrosion detection and protection application
- Fig. 9 : End-blocking of isocyanate groups for hindered reactivity of IPDI
- Fig. 10 : Time lapse pictures of microcapsules breaking down under basic pH
- Fig. 11 : A galvanic corrosion test cell consisting of a carbon steel disc in contact with copper tape was set up and immersed in gel with microcapsules containing a corrosion indicator. As the carbon steel corodes, the encapsulated corrosion indicator is released and its color change to purple shows the initiation and progress of corrosion
- Table 1 : Compatibility of microcapsules with commercial resins formulations
- Table 2 : Commonly used coat materials in microencapsulation
- Table 3 : Concentration of cerium released from microcapsules in pH 7 and 14 solutions over time |
En ligne : |
https://drive.google.com/file/d/1ytdqxFE9xYJh9bfOXGQ04xoC4lCuNUxI/view?usp=share [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31953 |
in PAINTINDIA > Vol. LXIX, N° 2 (02/2019) . - p. 53-67