[article]
Titre : |
A versatile, high-performance polyol chemistry for broad industrial market use |
Type de document : |
texte imprimé |
Auteurs : |
Jamie Dziczkowski, Auteur ; Sandra Case, Auteur ; Gianluigi Cassin, Auteur ; Jeremy Lizotte, Auteur ; Geoff Webster, Auteur |
Année de publication : |
2018 |
Article en page(s) : |
p. 20-25 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Automobiles -- Revêtements Automobiles -- Revêtements:Automobiles -- Peinture Automobiles -- Vernis Composés organiques volatils Durée de vie en pot Formulation (Génie chimique) GlycolsUn glycol ou diol est un composé chimique organique portant deux groupes hydroxyle (-OH).
Lorsque les deux groupes hydroxyle sont portés par le même atome de carbone, on parle de diol géminal. Parmi ceux-ci, on compte par exemple le méthanediol (H2C(OH)2) ou le 1,1,1,3,3,3-hexafluoropropane-2,2-diol ((F3C)2C(OH)2), la forme hydratée de l'hexafluoroacétone.
On parle de diol vicinal lorsque les deux groupes hydroxyle sont en position vicinale, c'est-à -dire attachés à des atomes de carbone adjacents. On compte parmi ceux-ci l'éthane-1,2-diol ou éthylène glycol (HO-(CH2)2-OH), un composant courant des produits antigels ou le propane-1,2-diol (propylène glycol, HO-CH2-CH(OH)-CH3).
Parmi les composés avec des groupes hydroxyles bien plus éloignés on compte le butane-1,4-diol (HO-(CH2)4-OH) ou encore le bisphénol A. Polyesters Polyols Réactions chimiques Résistance aux conditions climatiques Résistance chimique Revêtements (produits chimiques):Peinture (produits chimiques) Vernis bi-composant
|
Index. décimale : |
667.6 Peintures |
Résumé : |
Polyester polyol chemistry has been used extensively as a binder option in high performance industrial coatings applications for decades. Limitations of traditional polyester technology, such as weathering and chemical resistance have restricted its use to a co-binder due to the high level of performance requirements associated with these markets. Translating the use of a speciality monomer from copolyesters for thermoplastic applications, chemist at Eastman have evaluated the effectiveness of a unique glycol molecule as a building block in copolyester coatings resins targeted for use in automotive coatings, metal packaging applications for food cans and industrial applications like the agricultural and construction segment. Proven to enhance the hydrolytic stability and offer a balance of flexibility and hardness, the speciality polyol is enabling distinctive binder properties to address ever-changing global coatings needs. Fulfilling performance targets across very diverse fitness for use criterion, this paper capitalises on the versatility of the speciality polyol platform of resins. Through performance comparisons to next best alternative technologies, the improved durability will highlight the advantage of this next generation of polyol chemistry. |
Note de contenu : |
- Existing polyol technology
- Speciality polyol design
- Automotive and industrial applications
- Table 1 : Common polyol chemistries used in liquid OEM coatings applications
- Table 2 : Newman's empirical steric factors and material characteristics of common glycols
- Table 3 : End use application and coating details for evaluating speciality polyester polyol performance
- Table 4 : Target CTQ to address automotive monocoat and industrial topcoat market needs
- Table 5 : Resin series used to evaluate novel polyol performance in two-component top application
- Table 6 : White two-component formulations to evaluate performance in topcoat applications
- Table 7 : Chemical resistance of various white topcoat chemistries
- Table 8 : Cure response and pot-life for different industrial applications adjusted by catalyst selection
- Table 9 : VOC ranges for two-component topcoats formulated with the speciality polyol IC-1
- Fig. 1 : Representative reaction of a polyol with melamine resin chemistry
- Fig. 2 : Mechanism of thermosetting polyol/isocyanate reaction to form urethane linkage
- Fig. 3 : Reaction of phenolic resin with polyol to create C-C linkage within the themoset
- Fig. 4 : Chemical structure of 2,2,4,4-tetramethyl-1,3-cyclobutane diol (TMCD)
- Fig. 5 : Newman's empirical steric factors and material characteristics of common glycols
- Fig. 6 : Experimental half-life of model diesters after catalysed exposure to accelerated conditions
- Fig. 7 : Improved chemical resistance trend with increasing levels of TMCD monomer in total diol in a two-component topcoat coating system
- Fig. 8 : Common liquid OEM automotive and industrial paint layers and paint layer functions
- Fig. 9 : Weathering resistance, QUV-A exposure of white topcoat systems at 2500hr
- Fig. 10 : Salt spray resistance (840 hr) as measured by ASTM B117. The paint on right side of scribe (X) was removed to highlight undercut corrosion. The topcoat was applied directly to the metal (SP10 shot blasted steel)
- Fig. 11 : Improved resistance of TMCD poyol-based coatings to Skydrol and brake fluid |
En ligne : |
https://drive.google.com/file/d/1vrYwpBiYJlEyNcFzbeadoe2gcWgovDet/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31575 |
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 208, N° 4646 (11/2018) . - p. 20-25
[article]
|