Titre : |
High-confidence performance predictions for hybrid thermoplastic composite applications |
Type de document : |
texte imprimé |
Auteurs : |
Subhransu Mohapatra, Auteur ; Syed Muhammad Kashif, Auteur ; Warden Schijve ; Recep Yaldiz |
Année de publication : |
2018 |
Article en page(s) : |
p. 62-66 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Assemblages multimatériaux Composites à fibres -- Propriétés mécaniques Composites à fibres -- Surmoulage Composites à fibres courtes Composites à fibres longues Essais (technologie) Flexion (mécanique) Matériaux hybrides Prévision, Théorie de la
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
Multi-material hybrid structures combining continuous fibre thermoplastic composites with lower-cost options such as chopped fibre thermoplastic composites and metals are an attractive proposition for many industries due to their potential lower weight and cost. High confidence in performance predictions is one of the key enablers to convert this potential into successful industry adoption. However, chopped and continuous fibre thermoplastic composites pose numerous challenges for accurate predictions, due to the inherent complexity of the material behaviour.
To establish confidence in predictions, a test component was designed that can be produced in a representative production process and can validate all of the many different composite failure modes. |
Note de contenu : |
- Hybrid overmoulding process and material forms
- Validation test set-up
- Establishing the predictive methodology : Material modelling for UD tapes - Material modelling of overmoulded plastics
- Test-CAE correlation : Integrated simulation chain
- Fig. 1 : Hybrid overmoulding technology for thermoplastic hybrid components : 1) pick up of the composite blank ; 2) IR heating ; 3) blank fixation in the mould ; 4) blank thermoforming ; 5) injection overmoulding ; and 6) part demoulding
- Fig. 2 : Sabic's composite material portfolio
- Fig. 3 : Four-point bending hybrid test component. Note the depression in the mid-test section. 3D cross section showing a highly asymmetric UD insert layout
- Fig. 4 : Example of a damage initiation surface as a function of stress tri-axiality (PVC)
- Fig. 5 : Effects of including damage physics
- Fig. 6 : Repeatibility of physical tests
- Fig. 7 : Comparison between the test and abaqus results for static cases ; the solid lines are test resluts, the dotted lines are simulation results
- Fig. 8 : Comparison between the test and LS-DYNA results for a dynamic compression case
- Fig. 9 : Integrated siumlation chain, using mapping software |
En ligne : |
https://drive.google.com/file/d/15Rn-KrV0AMDfmqQY6fyCUzP5SqXoV3E0/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=30949 |
in JEC COMPOSITES MAGAZINE > N° 121 (05-06/2018) . - p. 62-66