Accueil
Détail de l'auteur
Auteur Linda G. S. Gray |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
When undercover agents are tested to the limit / Mike O'Donoghue in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 31, N° 3 (03/2014)
[article]
Titre : When undercover agents are tested to the limit : Coatings in action (CIA) and corrosion under insulation (CUI) at high temperature Type de document : texte imprimé Auteurs : Mike O'Donoghue, Auteur ; Vijay Datta, Auteur ; Adrian Andrews, Auteur ; Sean Adlem, Auteur ; Linda G. S. Gray, Auteur ; Tara Chahl, Auteur ; Nicole de Varennes, Auteur ; Bill Johnson, Auteur Année de publication : 2014 Article en page(s) : p. 32-46 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Acier au carbone
Acier inoxydable
AluminiumL'aluminium est un élément chimique, de symbole Al et de numéro atomique 13. C’est un métal pauvre, malléable, de couleur argent, qui est remarquable pour sa résistance à l’oxydation13 et sa faible densité. C'est le métal le plus abondant de l'écorce terrestre et le troisième élément le plus abondant après l'oxygène et le silicium ; il représente en moyenne 8 % de la masse des matériaux de la surface solide de notre planète. L'aluminium est trop réactif pour exister à l'état natif dans le milieu naturel : on le trouve au contraire sous forme combinée dans plus de 270 minéraux différents, son minerai principal étant la bauxite, où il est présent sous forme d’oxyde hydraté dont on extrait l’alumine. Il peut aussi être extrait de la néphéline, de la leucite, de la sillimanite, de l'andalousite et de la muscovite.
L'aluminium métallique est très oxydable, mais est immédiatement passivé par une fine couche d'alumine Al2O3 imperméable de quelques micromètres d'épaisseur qui protège la masse métallique de la corrosion. On parle de protection cinétique, par opposition à une protection thermodynamique, car l’aluminium reste en tout état de cause très sensible à l'oxydation. Cette résistance à la corrosion et sa remarquable légèreté en ont fait un matériau très utilisé industriellement.
L'aluminium est un produit industriel important, sous forme pure ou alliée, notamment dans l'aéronautique, les transports et la construction. Sa nature réactive en fait également un catalyseur et un additif dans l'industrie chimique ; il est ainsi utilisé pour accroître la puissance explosive du nitrate d'ammonium.
Anticorrosion
Copolymères
Corrosion sous isolation
Dépôt par pulvérisation
Hautes températures
Métaux -- Revêtements protecteurs
Oxyde de fer micacé
Polymères inorganiques
Résistance thermique
Structures offshore
Tests d'efficacité
Titane
TuyauterieIndex. décimale : 667.9 Revêtements et enduits Résumé : For industrial, marine, and offshore facility owners, the cost consequences of corrosion under insulation (CUI) can be intolerable in terms of lost production, chemical spills, environmental cleanup, and health and safety implications. Hence, it is very important to implement carefully designed CUI mitigation strategies.
Specialty coatings can be excellent tools for CUI mitigation strategies. The authors showed in previous laboratory investigations using a CUI cyclic test, that coated carbon steel pipe insulated with Cal-Sil (calcium silicate) saturated with a 1% NaCI (sodium chloride) salt solution performed best with either thermal spray aluminum (ISA) or a spray-applied titanium modified inorganic copolymer (TMIC). The raison d'etre for the use of calcium silicate as an insulation material was because it readily absorbs and wicks moisture and can bold about 20-40 times its weight in water,4 thus representing a worst-case scenario.
The cyclic temperature range used in the earlier work was 95 C to 445 C.2, 3 The temperature span was intended to ensure that the coated pipe test pieces were exposed to the NACE RP01985 critical corrosion temperature range (4 C to 175 C for carbon steel; 50 C to 175 C for stainless steel) and higher. Interestingly, an anomalous finding from the earlier work was that corrosion on wet and insulated bare steel pipe appeared to occur at temperatures higher than those known for the corrosion of dry carbon steel 1.5, 6 This suggested that temperatures, measured by thermocouples on bare steel pipe encased in dry insulation, which were used to indicate temperatures of coated steel pipe encased in wet insulation, were incorrect and needed to be checked to provide greater accuracy. These new temperature measurements were carried out as part of this new CUI study.
The primary aim of the current investigation was to evaluate coating performance on both carbon steel and stainless steel pipes in the temperature range for CUI and at elevated temperatures approaching 600 C. Utilizing the Cyclic Pipe test, the cyclic temperature resistance of a new member of the TMIC class of coatings was compared and contrasted with one of the other specialty coatings studied in the previous work, an inorganic coating containing micaceous iron oxide (hereinafter Coating A and designated Coating #2 in the former study). Both the original TMIC coating tested and the new TMIC coating evaluated in this study were aluminum filled. They were formulated to provide similar flexibility, be unaffected by intra-film stresses during high temperature cycling in the typical CUI temperature range, and withstand cycling and continuous operation between ambient and elevated temperatures. In the present investigation, the new TMIC coating was touted to perform up to 600 C, much greater than the 450 C limit for the earlier version.Note de contenu : - EXPERIMENTAL : Part A : Temperature profile studies on bare steel pipe - Part B : High temperature CUI studies on coated carbon and stainless steel pipes
- RESULTS : Temperature profile studies on bare steel pipes-Wet insulation - Weight change of the pipe - Temperature profiles : Day 1 - Temperature : profiles : Days 2-5 and days 6-10 - Temperature profile across the insulation - 150 mm from the hot end of the pipe - 450 mm from the hot end of the pipe
- RESULTS PART B : CUI studies on coated carbon and stainless steel pipes - Coating A in action - Carbon steel pipe - Stainless steel pipe - TMIC in action - Carbon steel pipe - Stainless steel pipe
- GENERAL DISCUSSION : Part : Temperature profiles studies on bare steel pipes - Part B : CUI studies on coated carbon stainless steel pipes - Carbon steel substrate - Stainless steel substrate - Coatings on carbon steel - Coatings on stainless steelPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21655
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 31, N° 3 (03/2014) . - p. 32-46[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16201 - Périodique Bibliothèque principale Documentaires Disponible