[article]
Titre : |
Polymeric supports for controlled release of ethylene for food industry |
Type de document : |
texte imprimé |
Auteurs : |
L. C. Capozzi, Auteur ; M. Bazzano, Auteur ; M. C. Cavallero, Auteur ; C. Barolo, Auteur ; R. Buscaino, Auteur ; A. Ferri, Auteur ; M. Sangermano, Auteur ; D. Vallauri, Auteur ; R. Pisano, Auteur |
Année de publication : |
2016 |
Article en page(s) : |
p. 570-576 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Aliments -- Conservation CyclodextrineUne cyclodextrine (dite parfois cycloamylose) est une molécule-cage ou cage moléculaire d’origine naturelle qui permet d’encapsuler diverses molécules. Les cyclodextrines se rencontrent aujourd'hui dans un grand nombre de produits agroalimentaires et pharmaceutiques et sont donc l’objet de nombreuses recherches scientifiques.
Une cyclodextrine est un oligomère (oligosaccharide) cyclique composé de n chaînons glucopyranose C6H10O5 liés en α-(1,4), d’où la formule brute (C6H10O5)n. Pour les cyclodextrines typiques les valeurs de n sont égales à 6, 7 ou 8. Mais d'autres cyclodextrines ont des valeurs de n plus élevées, de l'ordre de 10 à 30 ou même plus. Les plus grandes de ces molécules sont dites "cyclodextrines géantes", et perdent les propriétés de molécules-cages. Comme c'est le cas en langue anglaise3 il semble raisonnable de réserver le terme de cycloamyloses à ces cyclodextrines qui tendent à se rapprocher de l'amylose. Cet oligomère en chaîne ouverte possède un grand nombre n de chaînons C6H10O5. On note l'analogie de structure entre : d'une part les trois cyclodextrines typiques et l'amylose, et d'autre part les trois cycloalcanes (CH2)n avec n = 6, 7 ou 8 et le polyéthylène (CH2)n avec n très grand.
Trois familles sont principalement utilisées ou étudiées les α-, β- et γ-cyclodextrines formées respectivement de 6, 7 et 8 chaînons C6H10O.
Propriétés remarquables : Les cyclodextrines possèdent une structure en tronc de cône, délimitant une cavité en leur centre. Cette cavité présente un environnement carboné apolaire et plutôt hydrophobe (squelette carboné et oxygène en liaison éther), capable d'accueillir des molécules peu hydrosolubles, tandis que l'extérieur du tore présente de nombreux groupements hydroxyles, conduisant à une bonne solubilité (mais fortement variable selon les dérivés) des cyclodextrines en milieu aqueux. On remarquera que la β-CD naturelle est près de dix fois moins soluble que les α-CD et γ-CD naturelles: en effet, toutes les cyclodextrines présentent une ceinture de liaisons hydrogène à l'extérieur du tore. Il se trouve que cette "ceinture" est bien plus rigide chez la β-CD, ce qui explique la difficulté de cette molécule à former des liaisons hydrogène avec l'eau et donc sa plus faible solubilité en milieu aqueux. Grâce à cette cavité apolaire, les cyclodextrines sont capables de former des complexes d'inclusion en milieu aqueux avec une grande variété de molécules-invitées hydrophobes. Une ou plusieurs molécules peuvent être encapsulées dans une, deux ou trois cyclodextrines.
La formation de complexe suppose une bonne adéquation entre la taille de la molécule invitée et celle de la cyclodextrine (l'hôte). « Il se produit de manière non-covalente à l’intérieur de la cavité grâce, soit à des liaisons hydrogène, soit des interactions électroniques de Van der Waals »7. L'intérieur de la cavité apporte un micro-environnement lipophile dans lequel peuvent se placer des molécules non polaires. La principale force provoquant la formation de ces complexes est la stabilisation énergétique du système par le remplacement dans la cavité des molécules d'eau à haute enthalpie par des molécules hydrophobes qui créent des associations apolaires-apolaires. Ces molécules invitées sont en équilibre dynamique entre leur état libre et complexé. La résultante de cette complexation est la solubilisation de molécules hydrophobes très insolubles dans la phase aqueuse. Ainsi les cyclodextrines sont capables de complexer en milieu aqueux et ainsi de solubiliser les composés hydrophobes (la polarité de la cavité est comparable à celle d'une solution aqueuse d'éthanol). Les cyclodextrines sont de plus capables de créer des complexes de stœchiométries différentes selon le type de molécule invitée: plusieurs CD peuvent complexer la même molécule ou plusieurs molécules peuvent être complexées par la même CD. Il est d'usage de noter (i:j) la stœchiométrie du complexe, où j indique le nombre de CD impliquées et i le nombre de molécules complexées. Remarquez que les variations autour de ces stœchiométries sont très vastes, les complexes les plus courants étant les (1:1), (2:1) et (1:2), mais des complexes (3:4) ou encore (5:4) existent!
Cas particulier des dimères de cyclodextrines
Il a été publié récemment que certains dimères de cyclodextrines peuvent subir une étrange déformation dans l'eau. En effet, l'unité glucopyranose porteuse du groupement "linker" peut pivoter sur 360° permettant ainsi la formation d'un complexe d'inclusion entre la cyclodextrine et le groupement hydrophobe.
Les cyclodextrines sont utilisés dans de nombreux secteurs comme la médecine, la pharmacologie, l'agroalimentaire, la chimie analytique, la dépollution des sols, la métallurgie, la désodorisation, la cosmétique, le textile ainsi que comme catalyseur. Diffusion (physique) Emballages en matières plastiques Encapsulation Ethylène Films plastiques Polyéthylene glycol diacrylate Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of intelligent polymeric supports able to accurately regulate ethylene concentration in the atmosphere where fruits are preserved. Two different technologies were proposed: a polymeric (PEGDA) film and a polymeric (PLA) bag filled with inclusion complex of ethylene/?-cyclodextrin. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of ?-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. Intelligent polymeric film was prepared by dispersing inclusion complex into a thin polymeric film produced by UV-curing. Intelligent polymeric bag was made by inserting inclusion complex into heat sealed bag. The kinetics of ethylene release was studied for both systems, showing that it can effectively possible to control the release of ethylene within confined volume. Furthermore, modelling and simulations of ethylene release in a food container were made, demonstrating that it is possible to modulate release rate and, thus, control ripening. |
Note de contenu : |
- EXPERIMENTAL SECTION : Materials and methods - Production of ethylene/?-CD inclusion complex - Production of support embedded with inclusion complex - Ethylene release tests - Ethylene release modelling
- RESULTS AND DISCUSSION : Inclusion complex of A-cyclodexrin with ethylene - Choice of polymeric materials -Ethylene release kinetics - Modelling and simulation of ethylene release in a food container |
DOI : |
10.3139/217.3233 |
En ligne : |
https://drive.google.com/file/d/15viPoYv8W_dUnZqcvypIZWdEm4DsJck9/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=27382 |
in INTERNATIONAL POLYMER PROCESSING > Vol. XXXI, N° 5 (11/2016) . - p. 570-576
[article]
|