Titre : |
La conception numérique par l'optimisation |
Type de document : |
texte imprimé |
Auteurs : |
Guillaume Vansteenkiste, Auteur ; Ronan Le Goff, Auteur |
Année de publication : |
2013 |
Article en page(s) : |
p. 52-57 |
Langues : |
Français (fre) |
Catégories : |
Conception assistée par ordinateur Matières plastiques Optimisation topologiqueL'optimisation topologique consiste à trouver la répartition de matière idéale dans un volume donné soumis à des contraintes. Elle se distingue de l'optimisation de forme qui ne fait varier que la frontière de la pièce.
Mise en Å“uvre
En mécanique, la résolution d'un problème d'optimisation topologique passe par la discrétisation de la pièce (ou de l'ensemble de pièces) à optimiser sous forme d'éléments finis. Une densité topologique variant entre 0 et 1 est attribuée à chacun des éléments. Le problème est ensuite optimisé en utilisant une méthode de pénalités pour forcer les densités des éléments vers 0 (pas de matière) ou vers 1 (présence de matière)2.
Les objectifs des problèmes résolus sont en général de minimiser la masse ou de maximiser la résistance mécanique.
Les contraintes associées au problème d'optimisation sont en général des contraintes de déplacement, de déformation, de résistance mécanique, de vibrations...
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
L'optimisation topologique permet de modifier la nature même d'une structure et d'adapter sa géométrie aux contraintes. Objectif : orienter très tôt le concepteur vers la forme optimale. |
Note de contenu : |
- Un processus d'essais-erreurs
- Le dimensionnement en toute confiance
- Optistruct, un exemple d'optimisation topologique
- Etude de cas : une pièce de structure d'un satellite |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19291 |
in PLASTIQUES & CAOUTCHOUCS MAGAZINE > N° 905 (09/2013) . - p. 52-57