[article]
Titre : |
Influence prediction of small organic molecules (ureas and thioureas) upon electrical percolation of AOT-based microemulsions using artificial neural networks |
Type de document : |
texte imprimé |
Auteurs : |
Iago Antonio Montoya, Auteur ; Gonzalo Astray, Auteur ; Antonio Cid, Auteur ; José Antonio Manso, Auteur ; Oscar Adrian Moldes, Auteur ; Juan Carlos Mejuto, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
p. 316-320 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Microémulsions Percolation Réseaux neuronaux (informatique) Surfactants Thiourée Urée
|
Index. décimale : |
668.1 Agents tensioactifs : savons, détergents |
Résumé : |
In order to predict percolation temperature of AOT-Based microemulsions (AOT/iC8/H2O w/o microemulsions) in the presence of small organic molecules (ureas and thioureas), different Artificial Neural Network architectures (ANN) have been carried out using a Perceptron Multilayer Artificial Neural Network with three entrance variables (W = value of the microemulsion, additive concentration, logP value). Best ANN architecture consists in three input neurons, one middle layer (with two neurons) and one output neuron. Correlation values were R = 0.9251 for the training set and R = 0.9719 for the prediction set. |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=15551 |
in TENSIDE, SURFACTANTS, DETERGENTS > Vol. 49, N° 4 (07-08/2012) . - p. 316-320
[article]
|