Accueil
JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) . Vol. 31, N° 3Preparing and lining concrete for immersion serviceMention de date : 03/2014 Paru le : 14/04/2014 |
Dépouillements
Ajouter le résultat dans votre panierThe "Whoas" of solvent entrapment and release / Richard A. Burgess in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 31, N° 3 (03/2014)
[article]
Titre : The "Whoas" of solvent entrapment and release Type de document : texte imprimé Auteurs : Richard A. Burgess, Auteur Année de publication : 2014 Article en page(s) : p. 15-23 Langues : Américain (ame) Catégories : Echantillonnage
Evaporation
Revêtement en phase solvant:Peinture en phase solvant
Revêtements -- Défauts:Peinture -- Défauts
solvants
ViscositéIndex. décimale : 667.9 Revêtements et enduits Résumé : Whoa! Hold on ! How much thinner do you plan to add ? What thinner do you plan to add ? The data sheet says you can add up to 10% by volume.
Even so, it is not uncommon to see painters (or painters' helpers) estimating thinner addition. It takes an experienced applicator who can save precious time by estimating thinner additions. After all, the reducer is going to evaporate from the applied coating film anyway. Should it matter that the solvent is supplied by "Universal Solvent," and the coating is supplied by "Not-So-Universal Resin ?" Of course it matters, just as it matters when adding 15% thinner when 5% will produce the desired viscosity. When was the last time you actually saw a bridge painter measure viscosity ? And who actually mixes the paint? The per-son with twenty years of experience or the person who has had one year of training twenty times ?Note de contenu : - SOLVENTS IN COATINGS
- TYPES OF SOLVENTS
- SOLVENT RELEASE-EVAPORATION AND DIFFUSIVITY
- SOLVENT ENTRAPMENT : Consequences of solvent entrapment (bubbling, pinholes, cracking, orange peel, flocculation, running and sagging (curtains), blistering, solvent sensivity)
- SAMPLING AND TESTING FOR ENTRAPPED SOLVENTSPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21654
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 31, N° 3 (03/2014) . - p. 15-23[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16201 - Périodique Bibliothèque principale Documentaires Disponible When undercover agents are tested to the limit / Mike O'Donoghue in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 31, N° 3 (03/2014)
[article]
Titre : When undercover agents are tested to the limit : Coatings in action (CIA) and corrosion under insulation (CUI) at high temperature Type de document : texte imprimé Auteurs : Mike O'Donoghue, Auteur ; Vijay Datta, Auteur ; Adrian Andrews, Auteur ; Sean Adlem, Auteur ; Linda G. S. Gray, Auteur ; Tara Chahl, Auteur ; Nicole de Varennes, Auteur ; Bill Johnson, Auteur Année de publication : 2014 Article en page(s) : p. 32-46 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Acier au carbone
Acier inoxydable
AluminiumL'aluminium est un élément chimique, de symbole Al et de numéro atomique 13. C’est un métal pauvre, malléable, de couleur argent, qui est remarquable pour sa résistance à l’oxydation13 et sa faible densité. C'est le métal le plus abondant de l'écorce terrestre et le troisième élément le plus abondant après l'oxygène et le silicium ; il représente en moyenne 8 % de la masse des matériaux de la surface solide de notre planète. L'aluminium est trop réactif pour exister à l'état natif dans le milieu naturel : on le trouve au contraire sous forme combinée dans plus de 270 minéraux différents, son minerai principal étant la bauxite, où il est présent sous forme d’oxyde hydraté dont on extrait l’alumine. Il peut aussi être extrait de la néphéline, de la leucite, de la sillimanite, de l'andalousite et de la muscovite.
L'aluminium métallique est très oxydable, mais est immédiatement passivé par une fine couche d'alumine Al2O3 imperméable de quelques micromètres d'épaisseur qui protège la masse métallique de la corrosion. On parle de protection cinétique, par opposition à une protection thermodynamique, car l’aluminium reste en tout état de cause très sensible à l'oxydation. Cette résistance à la corrosion et sa remarquable légèreté en ont fait un matériau très utilisé industriellement.
L'aluminium est un produit industriel important, sous forme pure ou alliée, notamment dans l'aéronautique, les transports et la construction. Sa nature réactive en fait également un catalyseur et un additif dans l'industrie chimique ; il est ainsi utilisé pour accroître la puissance explosive du nitrate d'ammonium.
Anticorrosion
Copolymères
Corrosion sous isolation
Dépôt par pulvérisation
Hautes températures
Métaux -- Revêtements protecteurs
Oxyde de fer micacé
Polymères inorganiques
Résistance thermique
Structures offshore
Tests d'efficacité
Titane
TuyauterieIndex. décimale : 667.9 Revêtements et enduits Résumé : For industrial, marine, and offshore facility owners, the cost consequences of corrosion under insulation (CUI) can be intolerable in terms of lost production, chemical spills, environmental cleanup, and health and safety implications. Hence, it is very important to implement carefully designed CUI mitigation strategies.
Specialty coatings can be excellent tools for CUI mitigation strategies. The authors showed in previous laboratory investigations using a CUI cyclic test, that coated carbon steel pipe insulated with Cal-Sil (calcium silicate) saturated with a 1% NaCI (sodium chloride) salt solution performed best with either thermal spray aluminum (ISA) or a spray-applied titanium modified inorganic copolymer (TMIC). The raison d'etre for the use of calcium silicate as an insulation material was because it readily absorbs and wicks moisture and can bold about 20-40 times its weight in water,4 thus representing a worst-case scenario.
The cyclic temperature range used in the earlier work was 95 C to 445 C.2, 3 The temperature span was intended to ensure that the coated pipe test pieces were exposed to the NACE RP01985 critical corrosion temperature range (4 C to 175 C for carbon steel; 50 C to 175 C for stainless steel) and higher. Interestingly, an anomalous finding from the earlier work was that corrosion on wet and insulated bare steel pipe appeared to occur at temperatures higher than those known for the corrosion of dry carbon steel 1.5, 6 This suggested that temperatures, measured by thermocouples on bare steel pipe encased in dry insulation, which were used to indicate temperatures of coated steel pipe encased in wet insulation, were incorrect and needed to be checked to provide greater accuracy. These new temperature measurements were carried out as part of this new CUI study.
The primary aim of the current investigation was to evaluate coating performance on both carbon steel and stainless steel pipes in the temperature range for CUI and at elevated temperatures approaching 600 C. Utilizing the Cyclic Pipe test, the cyclic temperature resistance of a new member of the TMIC class of coatings was compared and contrasted with one of the other specialty coatings studied in the previous work, an inorganic coating containing micaceous iron oxide (hereinafter Coating A and designated Coating #2 in the former study). Both the original TMIC coating tested and the new TMIC coating evaluated in this study were aluminum filled. They were formulated to provide similar flexibility, be unaffected by intra-film stresses during high temperature cycling in the typical CUI temperature range, and withstand cycling and continuous operation between ambient and elevated temperatures. In the present investigation, the new TMIC coating was touted to perform up to 600 C, much greater than the 450 C limit for the earlier version.Note de contenu : - EXPERIMENTAL : Part A : Temperature profile studies on bare steel pipe - Part B : High temperature CUI studies on coated carbon and stainless steel pipes
- RESULTS : Temperature profile studies on bare steel pipes-Wet insulation - Weight change of the pipe - Temperature profiles : Day 1 - Temperature : profiles : Days 2-5 and days 6-10 - Temperature profile across the insulation - 150 mm from the hot end of the pipe - 450 mm from the hot end of the pipe
- RESULTS PART B : CUI studies on coated carbon and stainless steel pipes - Coating A in action - Carbon steel pipe - Stainless steel pipe - TMIC in action - Carbon steel pipe - Stainless steel pipe
- GENERAL DISCUSSION : Part : Temperature profiles studies on bare steel pipes - Part B : CUI studies on coated carbon stainless steel pipes - Carbon steel substrate - Stainless steel substrate - Coatings on carbon steel - Coatings on stainless steelPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21655
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 31, N° 3 (03/2014) . - p. 32-46[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16201 - Périodique Bibliothèque principale Documentaires Disponible Preparing and lining concrete for immersion service / Robert Maley in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 31, N° 3 (03/2014)
[article]
Titre : Preparing and lining concrete for immersion service : Steps and procedures to avoid failures Type de document : texte imprimé Auteurs : Robert Maley, Auteur Année de publication : 2014 Article en page(s) : p. 48-59 Langues : Américain (ame) Catégories : Eaux usées
Eaux usées -- Stations de traitements
Immersion
Matériaux cimentaires -- Détérioration
Revêtements en bétonIndex. décimale : 667.9 Revêtements et enduits Résumé : The practice of lining concrete substrates has increased exponentially over the last 30 years, most notably in the wastewater treatment industry. Environmental regulations, coupled with changes to treatment processes, have resulted in far more severe environments in which concrete can and will corrode.
Other than the floor coating field, very few contractors specialize in preparing and lining concrete structures, as carbon steel lining opportunities far outweigh those of concrete substrates. Accordingly, the majority of craft workers, both young and old, have far more training and experience preparing and lining steel substrates. It has been the author's observation that many of the aforementioned craft workers, and in many cases, management personnel, do not fully comprehend the difficulty and distinctions inherent to a concrete lining project.
A lack of understanding and experience extends beyond the contracting level. Many engineers, consultants, and inspectors do not fully comprehend the idiosyncrasies of lining concrete. When all the aforementioned parties converge upon a complex lining project, the potential for a perfect storm exists.
This article examines many of the common errors that often occur when concrete sub-strates are rehabilitated and offers practical solutions for prevention of said errors.
Note de contenu : - CHRONOLOGICAL EXAMINATION OF TYPICAL MISSTEPS : Surface preparation phase - Restoration/resurfacing phase - Lining application phase - Testing and repair phase
- FINGER POINTING OR AVOIDANCE
- DESIGN PHASE CONSIDERATIONSPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21656
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 31, N° 3 (03/2014) . - p. 48-59[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16201 - Périodique Bibliothèque principale Documentaires Disponible Shipyard regulatory update / Alison B. Kaelin in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 31, N° 3 (03/2014)
[article]
Titre : Shipyard regulatory update : What's happening with enforcement, regulation, and new osha guidance documents Type de document : texte imprimé Auteurs : Alison B. Kaelin, Auteur Année de publication : 2014 Article en page(s) : p. 60-70 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Abrasifs
Bateaux -- Conception et construction
Bateaux -- Entretien et réparations
Chantiers de construction
Chantiers navals
Conditions de travail
Eclairage
Règlements (droit administratif)
Travailleurs -- Protection
Ventilation -- Appareils et matérielsIndex. décimale : 620.8 Techniques de l'environnement du travail. Facteurs humains : ergonomie, sécurité du travail Résumé :
This article reviews OSHA enforcement on shipyard activities and recent guidance on illumination and ventilation related to ship repairing, shipbuilding, and shipbreaking that fall under OSHA's Standards for Shipyard Employment (29 CFR 1915). It also discusses new OSHA information on abrasive blasting hazards and potential Cal/OSHA Lead Standard changes that are applicable to shipyard and many ther industrial painting sectors.
Shipyards are fixed facilities with dry docks and fabrication equipment capable of building a ship, defined as watercraft typically suitable or intended for uses other than personal or recreational.
Activities of shipyards include the construction of ships, their repair, conversion and alteration, and the production of prefabricated ship and barge sections.Note de contenu : - OSHA shipyard fact sheets
- OSHA ventilation in shipyard employment guide-a shift in approach
- Abrasive blasting hazards
- Are we closer to revising the cal/OSHA lead standard ?
- Table 1 : Minimum lighting requirements according to OSHA fact sheet on fact lighting practices in the shipyard industry
- Table 2 : Minimum lighting requirements according to SSPC-guide 12
- Table 3 : Comparison of ventilation systems (dilution ventilation - Local exhaust ventilation)Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21657
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 31, N° 3 (03/2014) . - p. 60-70[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16201 - Périodique Bibliothèque principale Documentaires Disponible