Accueil
PAINTINDIA . Vol. LXIII, N° 7Mention de date : 07/2013Paru le : 15/07/2013 |
Dépouillements
Ajouter le résultat dans votre panierDevelopment and performance evaluation of fluoro ethylene vinyl ether (FEVE)/polyurethane hybrid coatings / R. S. Mishra in PAINTINDIA, Vol. LXIII, N° 7 (07/2013)
[article]
Titre : Development and performance evaluation of fluoro ethylene vinyl ether (FEVE)/polyurethane hybrid coatings Type de document : texte imprimé Auteurs : R. S. Mishra, Auteur Année de publication : 2013 Article en page(s) : p. 54-62 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Copolymère fluoroéthylène-vinyléther
Matériaux hybrides -- Détérioration
Microscopie à force atomique
Polyuréthanes
Spectroscopie d'impédance électrochimique
VieillissementIndex. décimale : 667.9 Revêtements et enduits Résumé :
In the present study, the efficacy of Fluoro Ethylene Vinyl Ether (FEVE) on the performance of Polyurethane coating was investigated. A series of Polyurethane (PU)/ FEVE hybrid coatings were formulated by incorporation of 2%, 5%, and 10% concentrations (by weight) of FEVE into PU coating. The structural characterization was done by ATR Fourier transform infrared spectroscopy (FTIR) spectroscopy. The prepared PU/FEVE hybrid coatings were casted on Teflon Petri dish and dried films were used to measure extent of water absorption and water vapor permeability. The prepared PU/ FEVE hybrid coatings were also applied on mild steel substrates. The ageing behavior of coated panels was evaluated by QUV Wheather-o-meter and gloss meter. The surface morphology, contact angle and corrosion resistance of coated panels were evaluated by Atomic Force Microscopy (AFM), Goniometry and Electrochemical Impedance Spectroscopy (EIS) respectively. Performance results suggest that, with increasing the concentration of FEVE, the performance of PU coating increases.Note de contenu : - EXPERIMENTAL : Materials - Formulation of coatings and film preparation - Characteriztion (FTIR studies - Surface morphology - Contact angle measurements - Permeability measurements - Mechanical properties - UV stability and corrosion resistance properties)
- RESULTS AND DISCUSSION : FTIR analysis - Surface morphology - Contact angle measurements - Mechanical properties (Adhesion test - Abrasion, scratch, impact resistance pencil hardness test) - QUV weathering test - Electrochemical testsPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19652
in PAINTINDIA > Vol. LXIII, N° 7 (07/2013) . - p. 54-62[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15620 - Périodique Bibliothèque principale Documentaires Disponible Methods for improving mar resistance / Snehal Sharad Kamble in PAINTINDIA, Vol. LXIII, N° 7 (07/2013)
[article]
Titre : Methods for improving mar resistance Type de document : texte imprimé Auteurs : Snehal Sharad Kamble, Auteur Année de publication : 2013 Article en page(s) : p. 64-71 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Acide dodécylbenzène sulfonique
Additifs
Automobiles -- Revêtements:Automobiles -- Peinture
Catalyse
Cires
Isocyanates
Nanotechnologie
PolydiméthylsiloxaneLe polydiméthylsiloxane —[O-Si(CH3)2]n—, ou poly(diméthylsiloxane) selon la nomenclature systématique, communément appelé PDMS ou diméthicone, est un polymère organominéral de la famille des siloxanes souvent présent dans les shampoings. On l'y ajoute pour augmenter le volume des cheveux mais il peut également aller boucher les pores du cuir chevelu et rendre les cheveux gras. C'est une des raisons pour lesquelles se laver les cheveux tous les jours est très déconseillé avec un shampooing contenant des silicones.
Il existe également de l'amodiméthicone, qui est un dérivé du diméthicone.
Le polydiméthylsiloxane est un additif alimentaire (E900), utilisé comme antimoussant dans les boissons (Coca-Cola BlāK).
La chaîne de poly(diméthylsiloxane) forme également la structure de base des huiles et des caoutchoucs silicones.
Résistance à l'abrasionIndex. décimale : 667.9 Revêtements et enduits Résumé : The change in business trends for automotive coatings has started with the strategy of the car makers to concentrate on core competencies, followed by a strategy to outsource nonstrategic activities. Up till now Long term durability in terms of colour and gloss of coating has been mostly achieved nevertheless, a 10 years' warranty remains a target to be worked on by improving resin andadditive performances in optimized basecoat & clear coat formulae.
Maintenance-free coatings have been prevalent in the automotive market for some time. Customers are aware of the scratch problems caused by car wash. Furthermore, scratch-free cars have a higher attraction potential in dealer show rooms. Solutions are difficult to find owing to the fact that a coating has to pass a number of tests and has a broad spectrum of performances. One approach for improvement in this respect without detrimental effects on other properties is the evolution of new ideas based on nanotechnology.
This article reviews the method of improving mar resistance. Developing the product which meets the customer requirement with the use of Polymer technology, additive technology & most recent Nanotechnology.Note de contenu : - Method for testing mar resistance
- Methods for improving mar resistance
- Resin technology
- Special isocyanates
- Nanotechnology
- Additives
- Waxes
- CatalystPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19653
in PAINTINDIA > Vol. LXIII, N° 7 (07/2013) . - p. 64-71[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15620 - Périodique Bibliothèque principale Documentaires Disponible Chemical vapour deposition / Debdas Pradhan in PAINTINDIA, Vol. LXIII, N° 7 (07/2013)
[article]
Titre : Chemical vapour deposition Type de document : texte imprimé Auteurs : Debdas Pradhan, Auteur Année de publication : 2013 Article en page(s) : p. 72-81 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Dépôt chimique en phase vapeur
RevêtementsIndex. décimale : 667.9 Revêtements et enduits Résumé : Chemical Va pour Deposition (CVD) of films and coatings involves the chemical reactions of gaseous reactants on or near the vicinity of a heated substrate surface. This atomistic deposition method can provide highly pure materials with structural control at atomic or nanometer scale level. Moreover, it can produce single layer, multilayer, composite, nanostructured, and functionally graded coating materials with well controlled dimension and unique structure at low processing temperatures. Furthermore, the unique feature of CVD over other deposition techniques such as the non-line-of-sight-deposition capability has allowed the coating of complex shape engineering components and the fabrication of nano-devices, carbon-carbon (C-C) composites, ceramic matrix composite (CMCs), free standing shape components. The versatility of CVD had led to rapid growth and it has become one of the main processing methods for the deposition of thin films and coatings for a wide range of applications, including semiconductors (e.g. Si, Ge, Si „Ge, III-V, II-Vl) for microelectronics, optoelectronics, energy conversion devices; dielectrics (e.g. SiO„ AIN, Si,N4) for microelectronics; refractory ceramic materials (e.g. SiC, TiN, TiB, AI,0„ BN, MoSi, ZrO) used for hardcoatings, protection against corrosion, oxidation or as diffusion barriers ; metallic films (e.g. W, Mo, Al, Cu, Pt) for microelectronics and for protective coatings; fibre production (e.g. B and SiC monofilament fibres) and fibre coating. Note de contenu : - PROCESS FACTORS : Substrates - Reaction temperature - Process principles and deposition mechanism
- CVD APPARATUS
- ENERGY SOURCES
- PRECURSORS : Typical precursor materials - Coating characteristics - Types of CVD
- 1. APCVD (Atmospheric Pressure Chemical Vapour deposition)
- 2. LPCVD (Low-Pressure Chemical Vapour Deposition)
- 3. MOCVD (Metal-Organic Chemical Vapour Deposition)
- 4. PECVD (Plasma-Enhanced Chemical Vapour Deposition)
- 5. LCVD (Laser Chemical Vapour Deposition)
- 6. PCVD (Photochemical Vapour Deposition
- 7. CVI (Chemical Vapour Infiltration)
- 8. CBE ( Chemical Beam Epitaxy)
- Advantages over MBE - Advantages over MOCVD - Shortcomings of CBEPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19654
in PAINTINDIA > Vol. LXIII, N° 7 (07/2013) . - p. 72-81[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15620 - Périodique Bibliothèque principale Documentaires Disponible Ecofriendly corrosion inhibiting additives for tomorrow's coatings / Tony Gichuhi in PAINTINDIA, Vol. LXIII, N° 7 (07/2013)
[article]
Titre : Ecofriendly corrosion inhibiting additives for tomorrow's coatings Type de document : texte imprimé Auteurs : Tony Gichuhi, Auteur Année de publication : 2013 Article en page(s) : p. 100-107 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosifs
Composés organiques
Polymères
Revêtements -- Additifs:Peinture -- AdditifsIndex. décimale : 667.9 Revêtements et enduits Résumé : Until recently heavy metal based corrosion inhibitors were widely accepted as the only materials that could provide the corrosion protection needed. Corrosion inhibitors provide an indispensable function to protective coatings. The performance of a coating under corrosive conditions requires that corrosion inhibitors provide sustainable protection during the coatings warranty. The coating industry however is challenged to be more cognizant of the impact toxic metals have on human health and the environment. In response to the European Directive 1999/45/EC Advancement of Technical Progress (ATP) amendment 29 effective October 2005, products containing zinc oxide and zinc phosphate required hazardous label ing due to their marine toxicity. The growing pressure to replace zinc, barium, strontium and other heavy metals has shifted the coatings pendulum to more ecofriendly alternatives. This paper captures specific products reflecting the new paradigm of technologies based on heavy-metal free inorganic pigments as well as non-toxic organic corrosion inhibitors. Note de contenu : - NON-TOXIC INORGANIC CORROSION INHIBITORS
- INORGANIC CORROSION INHIBITORS : HOW DO THEY WORK ? A. Anodic and cathodic passivation - B. Improved barrier properties
- NEW GENERATION OF ZINC-FREE INORGANIC CORROSION INHIBITORS : Unique characteristics of hybrid A
- ORGANIC INHIBITORS : ANOTHER ALTERNATIVE TO HEAVY METAL CORROSION INHIBITORS
- ORGANIC INHIBITORS : HOW DO THEY WORK : A. Improved barrier properties - B. Anodic passivation - C. Improved adhesion - D. Wetting - E. Decreased coating imperfections
- ORGANIC CORROSION INHIBITORS - SOME FORMULATING TIPS
- INORGANIC-ORGANIC CORROSION INHIBITOR SYNERGY
- Schematic mechanism of a direct, non-toxic inorganic corrosion inhibitor
- Table 1 : Attributes of hybrid A
- Table 2 : Attributes of organic corrosion inhibitorsPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19655
in PAINTINDIA > Vol. LXIII, N° 7 (07/2013) . - p. 100-107[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15620 - Périodique Bibliothèque principale Documentaires Disponible Electrochemical corrosion - Part 3 / P. K. Kamani in PAINTINDIA, Vol. LXIII, N° 7 (07/2013)
[article]
Titre : Electrochemical corrosion - Part 3 Type de document : texte imprimé Auteurs : P. K. Kamani, Auteur Année de publication : 2013 Article en page(s) : p. 108-112 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Corrosion électrochimique Index. décimale : 667.9 Revêtements et enduits Résumé : The corrosion of metals occurs primarily by electrochemical processes involving metal oxidation and simultaneous reduction of some other species. The mechanism involved in electrochemical corrosion (ECC) differs substantially from that of chemical corrosion. The ECC is characterised principally by localisation of the anodic and cathodic processes in different regions of the surface. These "sites" together make up a corrosion cell. The rate of ECC more or less depends upon the anodic and cathodic potentials. The potential difference causes flow of electron when the anode and cathode are in contact or electrically connected (short-circuited). The potential difference (EMF) and resistance in the circuit control the flow of charges or current.
The electrochemical corrosion is due to the formation of cells (anode and cathode) in the metal. These cells can be formed by one or many reasons e.g. due to grain boundaries in the Metal, rnechanical treatment given to metal, difference in concentration of electrolyte, difference in composition of metal, varying temperature of metal, difference in pH of environment, the metal is exposed to, variation in oxygen of metal environnent, variation in radiant energy, metal is subjected to, etc. The approach in designing the structures, equipments etc. and in selecting the metal should be such that, the cell formation does not take place, though it is difficult but can be reduced by judicious application of available technologies.Note de contenu : - ELECTROCHEMISTRY : 1. Galvanic cells - (Metallurgical structure - Metallurgical conditions) - 2. Concentration cell (Differential electrolyte concentration or differential salt concentration cell - Differential oxygen concentration or differential aeration cells - Differential temperature cells)
- ELECTROLYTE CELLSPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19656
in PAINTINDIA > Vol. LXIII, N° 7 (07/2013) . - p. 108-112[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15620 - Périodique Bibliothèque principale Documentaires Disponible
Exemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
15620 | - | Périodique | Bibliothèque principale | Documentaires | Disponible |