Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Acceptance testing for coatings in insulated service / Michael F. Melampy in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 34, N° 3 (03/2017)
[article]
Titre : Acceptance testing for coatings in insulated service Type de document : texte imprimé Auteurs : Michael F. Melampy, Auteur Année de publication : 2017 Article en page(s) : p. 34-40 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Corrosion sous isolation
Essais (technologie)
Essais accélérés (technologie)
Revêtements protecteursIndex. décimale : 667.9 Revêtements et enduits Résumé : Corrosion under insulation (CUI) is accelerated corrosion that takes place under insulation that is typically used to conserve energy, help with process control and protect workers from temperature extremes. CUI is an issue for facility owners in many industries that use heat or cold in their industrial processes, including chemical processing, refining, fertilizer manufacturing and power generation. Insulation used in these applications is generally mechanically attached to the substrate vessel or pipeline and is typically covered with cladding. Cladding is most often made of metal or plastic and is applied to protect the insulation from physical damage and to keep water away from the insulation and substrate.
Eventually, water and entrained contaminants can leak through the cladding into the insulation where it can come into contact with the carbon- or stainless-steel substrate. It is widely accepted that corrosion happens more quickly at higher temperatures approaching 212 F (100 C) when a corrosion cell exists, and it is also understood that the electrolytic concentration created by the evaporation of contaminated water in the insulation assembly can lead to accelerated corrosion. Further, process shutdowns, both planned and unplanned, allow for accelerated CUI corrosion.
CUI can result in substantial section loss of substrate materials that can lead to perforation of the piping system of operating equipment. Depending on what is flowing through the equipment, a perforation may result in a high-pressure steam leak or a hydrocarbon liquid or gas leak, which can lead to fires (pool fires and jet fires) and explosions. These leaks can cause significant damage, personal injury, environmental contamination, lost production time and a poor perception of ownership by the public. All of this equates to a substantial cost to the owners and stakeholders of businesses affected.Note de contenu : - Coating selection
- Coatings used for cui
- Cui environments
- Testing : Standard weathering testing - Thermal cycling testing - CUI test method - Optional testing
- TABLES : 1. NACE SP0198 summary of table 2 - 2. CUI environmental classifications - 3. Weathering test and duration - 4. Weathering test acceptance criteria - 5. Thermal cycle test and acceptance criteria - 6. Multi-phase CUI cyclic chamber test
- FIGURE : Overview of test equipment with open view of multi-phase CUI test chamber on leftEn ligne : http://www.paintsquare.com/archive/?fuseaction=view&articleid=6026 Format de la ressource électronique : Web Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=28367
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 34, N° 3 (03/2017) . - p. 34-40[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 18811 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : Corrosion under insulation : An in-depth analysis of CUI (Corrosion under isolation) Type de document : texte imprimé Auteurs : Andreas Hoyer, Auteur Année de publication : 2020 Article en page(s) : p. 16-21 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Acier au carbone
Acier inoxydable
Anticorrosifs
Corrosion -- Analyse
Corrosion sous isolation
TempératureIndex. décimale : 667.9 Revêtements et enduits Résumé : CUI is well understood, yet pervasive. Despite long-established mitigation methods. It costs the process industry millions of euros annually. Effective prevention based on life-cycle costs can slash the cost of downtime, maintenance repair, and inspection. Note de contenu : - CUI or carbon steel : The mechanism - Contaminants - Temperature - Insulation
- CUI of stainless steel : Alloys - Stress - Temperature - Electrolyte
- Preventing CUI : Organic coating system - Personnel protection cages - Thermal spray aluminium (TSA)
- Inspection of CUI
- Fig. 1 Through-wall corrosion under insulation of a large coated carbon-steel storage tank
- Fig. 2 : Effect of temperature on corrosion of steel in water
- Fig. 3 : Photograph showing ESCC of a 04 stainless steel evaporator flash tank. The tank was insulated with calcium silicate insulation and operated at temperatures upt to 100°C
- Fig. 4 : Analysis of 304 stainless steel pipe showing transgranular ESCC
- Fig. 5 : Corrosion of carbon steel where wet insulation was in contact with the surface
- Fig. 6 : Typical vessel attachments where water may by-pass insulation (Footnote 9)
- Fig. 7 : How to limit the occurrence of CUI
- Table 1 : Typical service temperatures for thermal insulation materialsEn ligne : https://drive.google.com/file/d/11oN16jmQvn4eqwrWFyXV6DZn18c3K4mb/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=33918
in EUROPEAN COATINGS JOURNAL (ECJ) > N° 4 (04/2020) . - p. 16-21[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21655 - Périodique Bibliothèque principale Documentaires Disponible Getting to grips with corrosion under insulation / James C. Reynolds in EUROPEAN COATINGS JOURNAL (ECJ), N° 1 (01/2019)
[article]
Titre : Getting to grips with corrosion under insulation : The evolution of third generation polysiloxane coatings for corrosion under insulation mitigation Type de document : texte imprimé Auteurs : James C. Reynolds, Auteur Année de publication : 2019 Article en page(s) : p. 36-41 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosifs
Anticorrosion
Corrosion sous isolation
Revêtements protecteurs
SiliconesLes silicones, ou polysiloxanes, sont des composés inorganiques formés d'une chaine silicium-oxygène (...-Si-O-Si-O-Si-O-...) sur laquelle des groupes se fixent, sur les atomes de silicium. Certains groupes organiques peuvent être utilisés pour relier entre elles plusieurs de ces chaines (...-Si-O-...). Le type le plus courant est le poly(diméthylsiloxane) linéaire ou PDMS. Le second groupe en importance de matériaux en silicone est celui des résines de silicone, formées par des oligosiloxanes ramifiés ou en forme de cage (wiki).Index. décimale : 667.9 Revêtements et enduits Résumé : Corrosion under insulation (CUI) is a well-known industrial problem that has been plaguing asset owners for decades. CUI represents one of the costliest corrosion factors for the oil and gas, petrochemical and general processing industries and can lead to unplanned shutdowns, maintenance repairs and even explosions on live plants. The risks which CUI poses have led to the adoption of many preventive methods aimed at determining best practice for minimising potentially catastrophic CUI issues. Note de contenu : - Siloxanes in standards and CUI coating requirements
- Test programme for CUI coatings
- Polysiloxane chemistry and suitability for CUI
- Polysiloxane coating evolution : First generaton polysiloxane (FGPS) - Second generation polysiloxane (SGPS) - Third generation polysiloxane (TGPS)
- Polysiloxane CUI performance
- Liquid-applied insulation coatings
- TGPS CUI mitigation system
- Fig. 1 : TGPS CUI mitigation coating - shop application prior to transport and installation
- Fig. 2 : TGPS CUI mitigation system
- Table 1 : Under insulation coatings (NACE SP0198-2017 classification) for carbon steel
- Table 2 : Comparison of laboratory and expected service environments for CUI coatings
- Table 3 : Polysiloxane evolution
- Table 4 : test results for second and third generation polysiloxane CUI coatings. All testing was done after curing coatings for 168 hours at 23°C and 50% rel. humidityEn ligne : https://drive.google.com/file/d/1NYEtiEEsVLyKVj37o-olhpv0zjSMOoYo/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32031
in EUROPEAN COATINGS JOURNAL (ECJ) > N° 1 (01/2019) . - p. 36-41[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20568 - Périodique Bibliothèque principale Documentaires Disponible When undercover agents are tested to the limit / Mike O'Donoghue in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL), Vol. 31, N° 3 (03/2014)
[article]
Titre : When undercover agents are tested to the limit : Coatings in action (CIA) and corrosion under insulation (CUI) at high temperature Type de document : texte imprimé Auteurs : Mike O'Donoghue, Auteur ; Vijay Datta, Auteur ; Adrian Andrews, Auteur ; Sean Adlem, Auteur ; Linda G. S. Gray, Auteur ; Tara Chahl, Auteur ; Nicole de Varennes, Auteur ; Bill Johnson, Auteur Année de publication : 2014 Article en page(s) : p. 32-46 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Acier au carbone
Acier inoxydable
AluminiumL'aluminium est un élément chimique, de symbole Al et de numéro atomique 13. C’est un métal pauvre, malléable, de couleur argent, qui est remarquable pour sa résistance à l’oxydation13 et sa faible densité. C'est le métal le plus abondant de l'écorce terrestre et le troisième élément le plus abondant après l'oxygène et le silicium ; il représente en moyenne 8 % de la masse des matériaux de la surface solide de notre planète. L'aluminium est trop réactif pour exister à l'état natif dans le milieu naturel : on le trouve au contraire sous forme combinée dans plus de 270 minéraux différents, son minerai principal étant la bauxite, où il est présent sous forme d’oxyde hydraté dont on extrait l’alumine. Il peut aussi être extrait de la néphéline, de la leucite, de la sillimanite, de l'andalousite et de la muscovite.
L'aluminium métallique est très oxydable, mais est immédiatement passivé par une fine couche d'alumine Al2O3 imperméable de quelques micromètres d'épaisseur qui protège la masse métallique de la corrosion. On parle de protection cinétique, par opposition à une protection thermodynamique, car l’aluminium reste en tout état de cause très sensible à l'oxydation. Cette résistance à la corrosion et sa remarquable légèreté en ont fait un matériau très utilisé industriellement.
L'aluminium est un produit industriel important, sous forme pure ou alliée, notamment dans l'aéronautique, les transports et la construction. Sa nature réactive en fait également un catalyseur et un additif dans l'industrie chimique ; il est ainsi utilisé pour accroître la puissance explosive du nitrate d'ammonium.
Anticorrosion
Copolymères
Corrosion sous isolation
Dépôt par pulvérisation
Hautes températures
Métaux -- Revêtements protecteurs
Oxyde de fer micacé
Polymères inorganiques
Résistance thermique
Structures offshore
Tests d'efficacité
Titane
TuyauterieIndex. décimale : 667.9 Revêtements et enduits Résumé : For industrial, marine, and offshore facility owners, the cost consequences of corrosion under insulation (CUI) can be intolerable in terms of lost production, chemical spills, environmental cleanup, and health and safety implications. Hence, it is very important to implement carefully designed CUI mitigation strategies.
Specialty coatings can be excellent tools for CUI mitigation strategies. The authors showed in previous laboratory investigations using a CUI cyclic test, that coated carbon steel pipe insulated with Cal-Sil (calcium silicate) saturated with a 1% NaCI (sodium chloride) salt solution performed best with either thermal spray aluminum (ISA) or a spray-applied titanium modified inorganic copolymer (TMIC). The raison d'etre for the use of calcium silicate as an insulation material was because it readily absorbs and wicks moisture and can bold about 20-40 times its weight in water,4 thus representing a worst-case scenario.
The cyclic temperature range used in the earlier work was 95 C to 445 C.2, 3 The temperature span was intended to ensure that the coated pipe test pieces were exposed to the NACE RP01985 critical corrosion temperature range (4 C to 175 C for carbon steel; 50 C to 175 C for stainless steel) and higher. Interestingly, an anomalous finding from the earlier work was that corrosion on wet and insulated bare steel pipe appeared to occur at temperatures higher than those known for the corrosion of dry carbon steel 1.5, 6 This suggested that temperatures, measured by thermocouples on bare steel pipe encased in dry insulation, which were used to indicate temperatures of coated steel pipe encased in wet insulation, were incorrect and needed to be checked to provide greater accuracy. These new temperature measurements were carried out as part of this new CUI study.
The primary aim of the current investigation was to evaluate coating performance on both carbon steel and stainless steel pipes in the temperature range for CUI and at elevated temperatures approaching 600 C. Utilizing the Cyclic Pipe test, the cyclic temperature resistance of a new member of the TMIC class of coatings was compared and contrasted with one of the other specialty coatings studied in the previous work, an inorganic coating containing micaceous iron oxide (hereinafter Coating A and designated Coating #2 in the former study). Both the original TMIC coating tested and the new TMIC coating evaluated in this study were aluminum filled. They were formulated to provide similar flexibility, be unaffected by intra-film stresses during high temperature cycling in the typical CUI temperature range, and withstand cycling and continuous operation between ambient and elevated temperatures. In the present investigation, the new TMIC coating was touted to perform up to 600 C, much greater than the 450 C limit for the earlier version.Note de contenu : - EXPERIMENTAL : Part A : Temperature profile studies on bare steel pipe - Part B : High temperature CUI studies on coated carbon and stainless steel pipes
- RESULTS : Temperature profile studies on bare steel pipes-Wet insulation - Weight change of the pipe - Temperature profiles : Day 1 - Temperature : profiles : Days 2-5 and days 6-10 - Temperature profile across the insulation - 150 mm from the hot end of the pipe - 450 mm from the hot end of the pipe
- RESULTS PART B : CUI studies on coated carbon and stainless steel pipes - Coating A in action - Carbon steel pipe - Stainless steel pipe - TMIC in action - Carbon steel pipe - Stainless steel pipe
- GENERAL DISCUSSION : Part : Temperature profiles studies on bare steel pipes - Part B : CUI studies on coated carbon stainless steel pipes - Carbon steel substrate - Stainless steel substrate - Coatings on carbon steel - Coatings on stainless steelPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21655
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 31, N° 3 (03/2014) . - p. 32-46[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16201 - Périodique Bibliothèque principale Documentaires Disponible