> Biomatériaux
Biomatériaux
Voir aussi
-
Acide polylactique-co-glycolique
Le PLGA, le PLG ou le poly(acide lactique- co- glycolique) est un copolymère qui est utilisé dans une multitude de dispositifs thérapeutiques approuvés par la Food and Drug Administration (FDA), en raison de sa biodégradabilité et de sa biocompatibilité. Le PLGA est synthétisé par co-polymérisation par ouverture de cycle de deux monomères différents, les dimères cycliques (1,4-dioxane-2,5-diones) de l'acide glycolique et de l'acide lactique. Les polymères peuvent être synthétisés sous forme de copolymères aléatoires ou séquencés conférant ainsi des propriétés de polymère supplémentaires. Les catalyseurs couramment utilisés dans la préparation de ce polymère comprennent le 2-éthylhexanoate d'étain (II), les alcoolates d'étain (II) ou l'isopropoxyde d'aluminium. Au cours de la polymérisation, des unités monomères successives (d'acide glycolique ou lactique) sont liées entre elles dans du PLGA par des liaisons ester, donnant ainsi un polyester aliphatique linéaire comme produit.
Selon le rapport du lactide au glycolide utilisé pour la polymérisation, différentes formes de PLGA peuvent être obtenues : celles-ci sont généralement identifiées en fonction du rapport molaire des monomères utilisés (par exemple PLGA 75:25 identifie un copolymère dont la composition est à 75 % lactique acide et 25 % d'acide glycolique). La cristallinité des PLGA variera de complètement amorphe à entièrement cristalline en fonction de la structure du bloc et du rapport molaire. Les PLGA présentent généralement une température de transition vitreuse dans la plage de 40 à 60°C. Le PLGA peut être dissous par une large gamme de solvants, selon la composition. Les polymères à plus haute teneur en lactide peuvent être dissous à l'aide de solvants chlorés, tandis que les matières à teneur en glycolide plus élevée nécessiteront l'utilisation de solvants fluorés tels que HFIP.
Le PLGA se dégrade par hydrolyse de ses liaisons esters en présence d' eau. Il a été démontré que le temps nécessaire à la dégradation du PLGA est lié au rapport des monomères utilisés dans la production : plus la teneur en unités glycolides est élevée, plus le temps nécessaire à la dégradation est faible par rapport aux matériaux à prédominance lactide. Une exception à cette règle est le copolymère avec un rapport 50/50 monomères qui présente la dégradation la plus rapide (environ deux mois). De plus, les polymères dont l'extrémité est coiffée d'esters (par opposition à l' acide carboxylique libre) présentent des demi-vies de dégradation plus longues. Cette flexibilité dans la dégradation l'a rendu pratique pour la fabrication de nombreux dispositifs médicaux , tels que les greffes, les sutures, les implants, les dispositifs prothétiques, les films d'étanchéité chirurgicaux, les micro et nanoparticules.
Le PLGA subit une hydrolyse dans le corps pour produire les monomères d'origine : l'acide lactique et l'acide glycolique. Ces deux monomères, dans des conditions physiologiques normales, sont des sous-produits de diverses voies métaboliques dans le corps. L'acide lactique est métabolisé dans le cycle de l'acide tricarboxylique et éliminé via le dioxyde de carbone et l' eau. L'acide glycolique est métabolisé de la même manière et également excrété par les reins. Puisque le corps peut métaboliser les deux monomères, il y a une toxicité systémique minimale associée à l'utilisation de PLGA pour des applications de biomatériaux. Cependant, il a été signalé que la dégradation acide du PLGA réduit le pH local suffisamment bas pour créer un environnement autocatalytique. Il a été démontré que le pH à l'intérieur d'une microsphère peut devenir aussi acide que pH. (Wikipedia)
-
Adhésifs biologiques
-
Bananier et constituants
-
Biocarburants
-
Biochimie
-
Biocompatibilité
-
Bioéthanol
-
Biofibres
-
Biomasse
-
Biomatériaux -- Aspects de l'environnement
-
Biomatériaux -- Propriétés mécaniques
-
Bioplastiques
-
Biopolymères
-
Biotechnologie
-
Fibre d'asclépiade
Les asclépiades, du genre Asclepias, plantes herbacées vivaces dicotylédones regroupent plus de 140 espèces inventoriées. Appartenant à la famille des Asclépiadacées selon la classification classique, elles sont maintenant réunies dans une sous-famille des Apocynacées, les Asclepiadoideae, selon la classification phylogénétique.
Carl von Linné nomma le genre d’après le dieu grec de la médecine Asclépios, cette plante possédant de nombreuses vertus en phytothérapie.
Elles représentent des plantes très importantes d'un point de vue écologique, fournissant du nectar à de nombreuses espèces de pollinisateurs, tout en étant la plante hôte de certains insectes comme le papillon monarque (Danaus plexippus).
Les espèces du genre asclépias produisent des cosses. Ces cosses contiennent des filaments mous connus sous le nom de soies, chacune d'entre elles étant rattachée à une graine. Lorsque la cosse mûrit, elle s'ouvre et les graines sont disséminées par anémochorie.
Les asclépiades produisent du latex, un liquide laiteux toxique composé d'une grande diversité de molécules, dont des alcaloïdes et des terpènes.
Utilisation : Dans le passé, la teneur élevée en dextrose du nectar de ces plantes était une source d'édulcorants pour les indigènes d'Amérique et les voyageurs. Le latex des asclépiades contient du caoutchouc (entre 1 et 2 %) utilisé comme ressource naturelle par les Alliés pendant la 2e guerre mondiale pour la confection de gilets de sauvetage. Depuis cette plante est identifiée comme espèce en difficulté du fait de l'effet combiné de l'urbanisation et de la pollution.
Mise en culture commercialement depuis 2012 principalement au Québec, l’asclépiade aussi connu sous l'appellation "soie" ou "soyer" en reprenant un terme utilisé par le naturaliste Charles Sigisbert Sonnini qui l'avait importé en France comme plante exotique à fibre soyeuse à incorporer dans les tissus. Le soyer du Québec [archive] est issu de la variété d’asclépiade commune (Asclepias syriaca) cultivée principalement dans la vallée du fleuve St-Laurent au Canada.
Une industrie vouée à sa transformation s'est constituée depuis 2015. On utilise la soie pour la confection d'isolant thermique, d'isolant acoustique ou d'absorbants pétroliers.
-
Fibres d'alfa
-
Fibres de banane
-
Fibres de phloème
-
Gaïalène
-
Isosorbide
L’isosorbide est un composé hétérocyclique obtenu à partir de la double réaction de déshydratation du sorbitol, lui-même issu de la réaction d’hydrogénation du glucose.
L’isosorbide est un diol issu des agro-ressources, non toxique, biodégradable et stable thermiquement.
L’isosorbide est un monomère qui peut être inséré dans des chaînes macromoléculaires de type polymères (polycarbonates, polyuréthanes, polyesters…). Il est également utilisé pour la synthèse de dérivés tels que les diesters, diéthers, dinitrates…
L’isosorbide est considéré comme synthon donnant accès à une nouvelle plateforme chimique d’intérêt puisqu’il est issu du végétal et permet d’obtenir de nombreux dérivés aux propriétés égales voire supérieures à leurs homologues de la pétrochimie.
-
Matériaux
-
Matériaux -- Propriétés hygrothermiques
-
Matériaux hybrides
-
Peinture biosourcée
-
Polydioxanone
Chimiquement, le polydioxanone est un polymère de multiples motifs éther - ester répétés. Il est obtenu par polymérisation par ouverture de cycle du monomère p- dioxanone. Le processus nécessite de la chaleur et un catalyseur organométallique comme l'acétylacétone de zirconium ou le L-lactate de zinc. Il se caractérise par une température de transition vitreuse comprise entre -10 et 0 ° C et une cristallinité d'environ 55 %. Pour la production de sutures, le polydioxanone est généralement extrudé en fibres, cependant il faut prendre soin de traiter le polymère à la température la plus basse possible, afin d'éviter sa dépolymérisation spontanée en monomère. Le groupe oxygène éther dans le squelette de la chaîne polymère est responsable de sa flexibilité.
Le polydioxanone est utilisé pour des applications biomédicales , en particulier dans la préparation de sutures chirurgicales. D'autres applications biomédicales comprennent l'orthopédie, la chirurgie maxillo-faciale, la chirurgie plastique, l'administration de médicaments, les applications cardiovasculaires et l'ingénierie tissulaire.
Il est dégradé par hydrolyse et les produits finaux sont principalement excrétés dans l'urine, le reste étant éliminé par voie digestive ou exhalé sous forme de CO2 . Le biomatériau est complètement réabsorbé en 6 mois et ne peut être vu qu'un tissu de réaction de corps étranger minimal à proximité de l'implant. Les matériaux en PDS peuvent être stérilisés avec de l'oxyde d'éthylène. (Wikipedia)
-
Polymères en médecine
-
Ressources renouvelables
-
Soie d'araignée
Les fibres de soie sont formées de fibroïnes (protéines filamenteuses, appelées aussi spidroïnes2, composées de copolymères à blocs hydrophiles et hydrophobes) constituées à 25-30 % d'alanine et à 40% de glycine.
La soie d'araignée est un polymère dont la configuration moléculaire peut varier et rapidement s'adapter à la température et à l'humidité, ce qui fascine les chercheurs en biomimétique ou en robotique.
La soie d'araignée est notamment capable de « Supercontraction » (de 10 à 140 MPa de tension) quand elle s'humidifie (en plusieurs minutes quand l'hygrométrie dépasse 70 %), et plus rapidement quand elle est subitement mouillée. C'est ainsi que les toiles peuvent résister à la pluie, et au poids de la rosée voire accumuler plusieurs grammes d'eau sous forme de gouttes, à partir de la bruine par exemple. La thermostabilité varie aussi selon le degré de supercontraction
|