Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Attention-based vector quantisation variational autoencoder for colour-patterned fabrics defect detection / Hongwei Zhang in COLORATION TECHNOLOGY, Vol. 139, N° 3 (06/2023)
[article]
Titre : Attention-based vector quantisation variational autoencoder for colour-patterned fabrics defect detection Type de document : texte imprimé Auteurs : Hongwei Zhang, Auteur ; Guanhua Qiao, Auteur ; Shuting Liu, Auteur ; Yuting Lyu, Auteur ; Le Yao, Auteur ; Zhiqiang Ge, Auteur Année de publication : 2023 Article en page(s) : p. 223-238 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Auto-encodeurs variationnels En apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles.
Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Les auto-encodeurs variationnels permettent de formuler un problème d'inférence statistique (par exemple, déduire la valeur d'une variable aléatoire à partir d'une autre variable aléatoire) en un problème d'optimisation statistique (c'est-à -dire trouver les valeurs de paramètres qui minimisent une fonction objectif). Ils représentent une fonction associant à une valeur d'entrée une distribution latente multivariée, qui n'est pas directement observée mais déduite depuis un modèle mathématique à partir de la distribution d'autres variables. Bien que ce type de modèle ait été initialement conçu pour l'apprentissage non supervisé, son efficacité a été prouvée pour l'apprentissage semi-supervisé et l'apprentissage supervisé. (Wikipedia)
Détection de défauts (Ingénierie)
Textiles et tissus -- DéfautsIndex. décimale : 667.3 Teinture et impression des tissus Résumé : Defect detection is an essential link in the fabric production process. Due to the diversity of patterns and scarcity of defect samples for colour-patterned fabrics, reconstruction-based unsupervised deep learning algorithms have received extensive attention in the field of fabric defect detection. Among them, unsupervised reconstruction models based on variational autoencoders (VAEs) have been shown to be effective. However, there is a problem of posterior collapse in the process of modelling parametric distributions of continuous variables by VAEs. Therefore, VAE-based defect detection methods for colour-patterned fabrics usually produce ambiguous reconstruction results, thereby affecting the defect detection performance. In this article, an attention-based vector quantisation variational autoencoder (AVQ-VAE) is proposed for colour-patterned fabric defect detection. The method adopts autoregressive modelling of discrete variables to avoid the posterior collapse problem of traditional VAEs, and utilises attention mechanism to enhance the feature representation ability of the model. AVQ-VAE consists of encoder, embedding space, decoder and attention mechanism. The encoder is used to map the input image into multiple feature vectors. Vector quantisation in embedding space is used for discretisation and autoregressive modelling of feature vectors. A decoder is used to decode discrete variables into images of the same size as the original input. Furthermore, an attention mechanism is used to capture channel and spatial correlations, which help the model focus on important information by adaptively recalibrating feature maps. Experimental results on public datasets demonstrate that the proposed method is robust and effective for colour-patterned fabric defect detection. Note de contenu : - RELATED WORKS : Unsupervised deep learning based fabric defect detection - VAE-based model - Attention mechanism
- THE PROPOSED AVQ-VAE METHOD : AVQ-VAE and training process -
Colour-patterned fabric defect detection based on AVQ-VAE
- EXPERIMENT : Experimental platform - Datasets - Parameter setting - Evaluation metrics - Defect detection results on dataset YDFID-1 - Defect detection results on anomaly detection dataset MVTec AD
- Table 1 : Number of selected YDFID-1 patterns
- Table 2 : Defect detection results of six models on colour-patterned fabrics
- Table 3 : AUROC results for the three methodsTABLE 4. AUPRO results for the three methodsDOI : https://doi.org/10.1111/cote.12644 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12644 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=39534
in COLORATION TECHNOLOGY > Vol. 139, N° 3 (06/2023) . - p. 223-238[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24086 - Périodique Bibliothèque principale Documentaires Disponible Automatic fabric defect detection using a deep convolutional neural network / Jun-Feng Jing in COLORATION TECHNOLOGY, Vol. 135, N° 3 (06/2019)
[article]
Titre : Automatic fabric defect detection using a deep convolutional neural network Type de document : texte imprimé Auteurs : Jun-Feng Jing, Auteur ; Hao Ma, Auteur ; Huan-Huan Zhang, Auteur Année de publication : 2019 Article en page(s) : p. 213-223 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Détection de défauts (Ingénierie)
Réseaux neuronaux (informatique)
Textiles et tissus -- DéfautsIndex. décimale : 667.3 Teinture et impression des tissus Résumé : Fabric defect detection plays an important role in the textile production process, but there are still some challenges in detecting defects rapidly and accurately. In this paper, we propose a powerful detection method for automatic fabric defect detection using a deep convolutional neural network (CNN). It consists of three main steps. First, the fabric image is decomposed into local patches and each local patch is labelled. Then the labelled patches are transmitted to the pretrained deep CNN for transfer learning. Finally, defects are detected during the inspection phase by sliding over the whole image using the trained model, and the category and position of each defect is obtained. The proposed method is validated on two public and one self‐made fabric database. The experimental results demonstrate that our method significantly outperforms selected state‐of‐the art methods in terms of both quality and robustness. Note de contenu : - REVIEW OF PREVIOUS WORK
- PTIP METHOD : Automatically calculating the patch size - Manual labelling category - Convolutional neural network - Network model
- DATASET : TLDS database - Dark red fabric - Patterned texture fabric (regular patterned fabric
- EXPERIMENTAL RESULTS : Accuracy of the TILDA database - Accuracy of dark red fabric - Patterned fabric database - Evaluation of accuracy - Parameter selectionDOI : 10.1111/cote.12394 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12394 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32613
in COLORATION TECHNOLOGY > Vol. 135, N° 3 (06/2019) . - p. 213-223[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20951 - Périodique Bibliothèque principale Documentaires Disponible
[article]
Titre : Boulochage : Mesure et évaluation Type de document : texte imprimé Auteurs : Iris Biermann, Auteur Année de publication : 2003 Article en page(s) : p. 53-56 Langues : Français (fre) Catégories : Boulochage
Evaluation
Mesure
Textiles et tissus -- DéfautsIndex. décimale : 677 Textiles Résumé : Les bouloches sont des nœuds et des bourres de formes arrondies qui apparaissent à la surface des textiles. Particulièrement négative pour l'aspect esthétique du vêtement, elles sont de plus très difficiles à éliminer: elles présentent le plus souvent une très forte cohésion du fait de l'entremêlement et de l'ondulation des fibres. Sans parler de l'origine du phénomène, on constate déjà une difficulté majeure dans la mesure et l'évaluation de la tendance d'un textile au boulochage. Note de contenu : - BOULOCHES ÉTRANGÈRES ET AUTO-FORMÉES
- MÉTHODES D'ESSAI: Le random tumble pilling test (DIN 53867, ASTM 3512) - Le test ici - Nu-martindale abrasion and pilling tester
- INFLUENCE DU LABORANTIN
- LIMITES DES MÉTHODES D'ESSAISEn ligne : https://drive.google.com/file/d/1pVPycah-B7O_k3iUMcZ4D49pOeX3tH0V/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21054
in L'INDUSTRIE TEXTILE > N° 1351 (05/2003) . - p. 53-56[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 001191 - Périodique Bibliothèque principale Documentaires Disponible Catalogue of types of fabric defects in grey goods / Institut Für textilmaschinenbau und textilindustrie der Eidgenössischen Technischen Hochschule / 1989
Titre : Catalogue of types of fabric defects in grey goods Type de document : texte imprimé Auteurs : Institut Für textilmaschinenbau und textilindustrie der Eidgenössischen Technischen Hochschule, Auteur ; International Textile Service, Auteur ; Industrieverband Textil, Auteur Mention d'édition : Seconde édition révisée Année de publication : 1989 Importance : 62 p. Présentation : ill. Format : 24 cm Note générale : Index Langues : Anglais (eng) Catégories : Textiles et tissus -- Défauts Index. décimale : 677 Textiles Note de contenu : - DEFAUTS DANS LE SENS DE LA TRAME : Rayure - Fin - Rentrée de trame - Fil étranger - Duvet - Casse du fil de trame - Courte duite
- DEFAUTS DE NE DEPENDANT PAS DES SENS DU FIL : Aspect - Tâche - Défaut du filé - Fente - Entrelacement - Boucle - Trou - Fil lache - Fil serré - Flotté - Réparation en fin de chaîne
- DEFAUTS DANS LE SENS DE LA CHAINE : Trace du peingne - Tracé du templet - Défaut de rentrage - Casse fin de chaînePermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=793 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 1325 677 CAT Monographie Bibliothèque principale Documentaires Disponible Documents numériques
Catalogue of types of fabric defects in grey goodsURL Colour-patterned fabric defect detection based on an unsupervised multi-scale U-shaped denoising convolutional autoencoder model / Hongwei Zhang in COLORATION TECHNOLOGY, Vol. 138, N° 5 (10/2022)
[article]
Titre : Colour-patterned fabric defect detection based on an unsupervised multi-scale U-shaped denoising convolutional autoencoder model Type de document : texte imprimé Auteurs : Hongwei Zhang, Auteur ; Shuting Liu, Auteur ; Quanlu Tan, Auteur ; Shuai Lu, Auteur ; Le Yao, Auteur ; Zhiqiang Ge, Auteur Année de publication : 2022 Article en page(s) : p. 522-537 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Détection de défauts (Ingénierie)
Impression sur étoffes
Textiles et tissus -- DéfautsIndex. décimale : 667.3 Teinture et impression des tissus Résumé : This study proposes an unsupervised, learning-based, reconstructed scheme and a residual analysis-based defect detection model for colour-patterned fabric defect detection problems in the clothing process industry. It solves the challenging problems of existing supervised fabric defect detection methods, such as high costs in manually labelling samples and designing features, unstable generalisation ability and scarcity of defective samples. First, for a specific texture, the training set was constructed by collecting easily accessible defect-free colour-patterned fabric images. Second, a multi-scale U-shaped denoising convolutional autoencoder was modelled using defect-free samples, which can reconstruct the newly tested colour-patterned fabric images automatically. Subsequently, a residual map between the original image and corresponding reconstructed image was calculated. Finally, the defective areas were detected and accurately localised by further opening operations. The experimental results indicated that the proposed method is valid and robust for detecting defects in various colour-patterned fabrics. Moreover, with the YDFID-1 dataset, compared with other models, the intersection over union index of the model proposed in the current paper was improved by at least 3.95%. Note de contenu : - PRELIMINARIES : The traditional U-Net mode
- THE PROPOSED METHOD FOR COLOUR-PATTERNED FABRIC DEFECT DETECTION : The UDCAE model - The multi-scale UDCAE model - The model training phase - The model testing phase for defect detection
- EXPERIMENTAL RESULTS AND ANALYSIS : Description of datasets - Experimental platform - Evaluation metrics - Qualitative and quantitative performance analyses
- Table 1 : The number of colour-patterned fabric samples
- Table 2 : The PSNR and SSIM values of reconstructed results with 11 loss functions
- Table 3 : Comparison of time consumption of four loss functions in the training and testing phase
- Table 4 : The PSNR and SSIM values of reconstructed defect-free results with four models
- Table 5 : Comparison of four evaluation indicators of defect detection results with five models
- Table 6 : Comparisons of AUROC of defect detection results with six modelsDOI : https://doi.org/10.1111/cote.12609 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12609 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=38126
in COLORATION TECHNOLOGY > Vol. 138, N° 5 (10/2022) . - p. 522-537[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23613 - Périodique Bibliothèque principale Documentaires Disponible Colour-patterned fabric-defect detection using unsupervised and memorial defect-free features / Hongwei Zhang in COLORATION TECHNOLOGY, Vol. 138, N° 6 (12/2022)
PermalinkA contrastive learning-based attention generative adversarial network for defect detection in colour-patterned fabric in COLORATION TECHNOLOGY, Vol. 139, N° 3 (06/2023)
PermalinkDébris de coque en filature / Jean-Yves Drean in L'INDUSTRIE TEXTILE, N° 1295 (02/1998)
PermalinkPermalinkFabric defect detection based on golden image subtraction / Jun-Feng Jing in COLORATION TECHNOLOGY, Vol. 133, N° 1 (02/2017)
PermalinkA mixed-attention-based multi-scale autoencoder algorithm for fabric defect detection / Hongwei Zhang in COLORATION TECHNOLOGY, Vol. 140, N° 3 (06/2024)
PermalinkA novel feature-based network with sequential information for textile defect detection / Li Chenxi in COLORATION TECHNOLOGY, Vol. 136, N° 6 (12/2020)
PermalinkProgressive mask-oriented unsupervised fabric defect detection under background repair / Shancheng Tang in COLORATION TECHNOLOGY, Vol. 140, N° 3 (06/2024)
PermalinkTextiles. Détermination de la propension des étoffes à l'ébouriffage en surface et au boulochage - Norme NF EN ISO 12945-1 / Association Française de Normalisation (Paris) / Saint-Denis La Plaine : Association Française de Normalisation (AFNOR) (2002)
PermalinkTextiles. Détermination de la propension des étoffes à l'ébouriffage en surface et au boulochage - Norme NF EN ISO 12945-1 / Association Française de Normalisation (Paris) / Saint-Denis La Plaine : Association Française de Normalisation (AFNOR) (2000)
PermalinkThe design of optimal real gabor filters and their applications in fabric defect detection / Zehong Chen in COLORATION TECHNOLOGY, Vol. 131, N° 4 (08/2015)
PermalinkVision artificielle / Nicolas Giraud in L'INDUSTRIE TEXTILE, N° 1319 (04/2000)
PermalinkVisual intelligence for optical inspection systems - interaction of hardware and software / Johannes Höhne in TECHNICAL TEXTILES, Vol. 66, N° 3 (2023)
Permalink