Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le haut et vers le bas
An integrated antireflection design using nanotexture and high-refractive-index glass for organic photovoltaics / Shigeru Kubota in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 14, N° 5 (09/2017)
[article]
Titre : An integrated antireflection design using nanotexture and high-refractive-index glass for organic photovoltaics Type de document : texte imprimé Auteurs : Shigeru Kubota, Auteur ; Yoshiki Harada, Auteur ; Takenari Sudo, Auteur ; Kensaku Kanomata, Auteur ; Bashir Ahmmad, Auteur ; Jun Mizuno, Auteur ; Fumihiko Hirose, Auteur Année de publication : 2017 Article en page(s) : p. 1209-1224 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Photopiles
Revêtement antireflet
VerreIndex. décimale : 667.9 Revêtements et enduits Résumé : We propose a new antireflection (AR) design for organic photovoltaics (OPVs) to achieve broadband and omnidirectional enhancement of photocurrent. In the proposed design, a hybrid AR structure, which combines moth eye texturing and two-layer interference coating, is integrated with a glass substrate having a high refractive index (n). Using the optical simulation for OPV cells, we compare the performance of various AR configurations upon changing the refractive index of the glass substrate. We show that the short-circuit current density (JSC) is decreased by using the high-n glass substrate without AR coating, whereas JSC is significantly increased by applying the high-n glass substrate with the hybrid AR structure, suggesting an importance of the integrated design. In addition, we demonstrate that the proposed AR configuration is quite effective to attain broad angle performance and is robust against the variations in geometric features of moth eye texture. Finally, the spectral dependence of photocurrent generation is experimentally measured for the verification of the effectiveness of the integrated AR design. These results provide a practical and efficient AR technique that can further expand the potential of OPVs as energy supply devices. Note de contenu : - EXPERIMENTAL : Optical modeling - Effective medium approximation - Characteristic matrix-based analysis - Incident light condition - Device fabrication and testing
- RESULTS AND DISCUSSION : Effectiveness of the AR design with hybrid ARS and high-n glass substrate - Wide-angle AR performance - Robustness against variations in geometric features of moth eye structure - Photocurrent loss by the absorption in glass substrate - Experimental testingDOI : 10.1007/s11998-017-9914-9 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-017-9914-9.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=29154
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 14, N° 5 (09/2017) . - p. 1209-1224[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 19230 - Périodique Bibliothèque principale Documentaires Disponible Anti-reflective smart coatings on glasses / Praful Sanjay Dahatonde in PAINTINDIA, Vol. LXIII, N° 6 (06/2013)
[article]
Titre : Anti-reflective smart coatings on glasses Type de document : texte imprimé Auteurs : Praful Sanjay Dahatonde, Auteur Année de publication : 2013 Article en page(s) : p. 62-66 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Matériaux intelligents
Polymérisation sous plasma
Revêtement antireflet:Peinture antireflet
VerreIndex. décimale : 667.9 Revêtements et enduits Résumé : Our eyes are very complex organs. In order for our eyes to see, there must be light. Light rays reflect off of an object and enter the eye through the cornea. At the back of the eye the light is focused by the retina, and then it is converted into electric signais to be sent to the brain. Once the brain receives the signais, vision occurs. If the eye cannot properly focus an image it is said to have a refractive error. An eye doctor can determine the type of refractive error by a test cal led refraction. Correcting a refractive error is achieved by glasses, contacts or refractive surgery. A type of optical coating applied to the surface of lenses and other optical devices to reduce reflection. Anti-reflective coating (AR coating) is made of several layers of film metal oxides that are layered on the surface of the lens. Each layer is chemically engineered to block reflected light. This causes the intensity of the light reflected from the inner surface and the light reflected from the outer surface of the film to be nearly equal, canceling each other out and el iminating glare. Antireflection coatings are used to reduce reflection from surfaces. Whenever a ray of light moues from one medium to another (such as when light enters a sheet of glass alter travelling through air), some portion of the light is reflected from the surface (known as the interface) between the two media. AR was first developed to enhance and improve the view on high powered telescopes, microscopes and camera lenses. AR coating is composed of multiple layers of metal oxides applied to the front and sometimes the back surface of the lens. This layeringeffect reduces reflected light and aliows more I ight to betransmitted through the lens.
What does this do for eyeglasses? First, it improves the appearance of your eyes to the outside world. AR coating makes the lenses appear almost invisible. It also vastly improves the cosmetic appearance of wearing the lenses by reducing internai reflections in the lens, making your lenses appear much thinner.
Secondly, it improves the quality of your vision by reducing reflected lights. This cuts down on glare and halos around lights, and improves the quality of your vision at night and when us ing the computer in certain work environments.
While AR coating is beneficial to everyone, it is found almost universally on high index lenses. High index lenses are made out of a type of plastic that can make your lenses much thinner than regular plastic lenses. However, to achieve th is thinness, sometimes the lens material can cause unwanted reflections. As a result, manufacturers who produce very high index lenses make AR a part of the complete lens price and do not separate the lens from the AR coating because they bel ieve a very high index lens should never be worn without an AR coating.Note de contenu : - EXPERIMENTAL : PLASMA POLYMERIZATION DEPOSITION SYSTEM
- THEORY OF AR COATINGS
- TYPES OF AR COATINGS : A) Index-matching - B) Single-layer interférence - C) Multi-layer interference - D) Absorbing
- WHY CHOOSE AN ANTI-REFLECTION COATING ?
- HOW DOES AN ANTI-REFLECTION COATING WORK ? : Tinted - Polarized - Photochromic - MirroredEn ligne : https://drive.google.com/file/d/1C0S7vtYpnVDIXciVtNXd6eamJ-uaBkTm/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=18975
in PAINTINDIA > Vol. LXIII, N° 6 (06/2013) . - p. 62-66[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15287 - Périodique Bibliothèque principale Documentaires Disponible Antireflective coatings / Saurabh Kusurkar in PAINTINDIA, Vol. LXIII, N° 9 (09/2013)
[article]
Titre : Antireflective coatings Type de document : texte imprimé Auteurs : Saurabh Kusurkar, Auteur Année de publication : 2013 Article en page(s) : p. 67-72 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anti-réflectance
Revêtement antireflet:Peinture antirefletTags : 'Revêtement optique' Interface Antireflet 'Images fantômes' Optoélectronique 'Interférence destructive' Index. décimale : 667.9 Revêtements et enduits Résumé : An optical coating is one or more thin layers of material deposited on an optical component such as a lens or, mirror, which alters the way in which the optic (Glass ) reflects and transmits light. One of the types of optical coating is an antireflection coating, which reduces unwanted reflections from surfaces.
As light passes through an uncoated glass substrate, approximately 4% will be reflected at each interface. This results in a total transmission of only 92% of the incident light. Applying an AR coating on each surface will increase the throughput of the system and reduce hazards caused by reflections traveling backwards through the system (e.g. ghost images).
Antireflection (AR) coatings have been widely employed in optical and optoelectronic materials, a decrease in light reflection, and thus an increase in the transmittance of light, enables clear viewing with the eyes of glass and displaying surfaces. AR coatings find its application to Image sensors, Lithograph; Light-emitting diodes (LEDs) are a common solid state light source. Also in camera lenses, Solar panels etc where loss of light by reflection is the loss of output and quality of the product.
The principle of AR coating is based on the destructive interference of reflected light from interfaces between air and a film.Note de contenu : - SOME EXAMPLES OF ANTIREFLECTIVE COATINGS BEFORE AND AFTER
- HOW DOES AN ANTI-REFLECTION COATING WORK ?
- ANTIREFLECTIVE POLYMERS : Fluoroacrylate - Fluorosilicate acrylate - Fluoroéthanes
- PERFLUOROPOLYETHERS/PERFLUOROPOLYOXETANES
- TYPES OF ANTIREFLECTIVE COATINGS : Tydex - Single layer MgF coating - V-type single wavelength AR coating - Broadband AR coating - Dual- and triple-band AR coating - Dual band infrared AR coating
- AR COATING - MARKET RESEARCH
- MARKET PLAYER : DSM coating/KhepriCoat - Brewer Science and Dow Chemical Company / ENSEMBLE ARC - DuPont/Teflon AF
- ANTIREFLECTIVE COATINGS - APPLICATION METHODS : Dip coating - Spray coating - Flow coating - PVD (Physical Vapor Deposition) - CVD (Chemical Vapor Deposition)
- AR COATING APPLICATION FIELDSPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=19676
in PAINTINDIA > Vol. LXIII, N° 9 (09/2013) . - p. 67-72[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15622 - Périodique Bibliothèque principale Documentaires Disponible Coating on plastic substrates : A review / Kanishka S. Vispute in PAINTINDIA, Vol. LXXIII, N° 2 (02/2023)
[article]
Titre : Coating on plastic substrates : A review Type de document : texte imprimé Auteurs : Kanishka S. Vispute, Auteur ; Aarti Purushottam More, Auteur Année de publication : 2023 Article en page(s) : p. 52-64 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Matières plastiques -- Revêtement
Résistance à l'abrasion
Revêtement antireflet
Revêtements anti-buée
Revêtements organiques
Revêtements pelableIndex. décimale : 667.9 Revêtements et enduits Résumé : In current and upcoming era, plastic substrate would be a great choice for its properties like versatile, light weight, easily moldable, non-corrosive material. It serves many advantages to the various industries, household section, automotives and so on. Many have negative views on plastic but the fact is plastic occupies a large section in our day-to-day life. Apart from its disadvantages, it serves many good properties. Different varieties in it like amorphous, transparent, thermoplast, thermosets are good enough to occupy large application area. To improve its performance or to extend its lifespan various coatings on plastic substrates cornes into the picture. This review explains the five different types of coatings on plastics; anti-scratch coating, anti-fog coating, anti-reflection coating, peelable coating and in the last section various coatings are noted down in miscellaneous coating section. Each of the coating serves good properties along with cost efficiency and properly adhere to the substrate. These coatings increase the sign ificant properties of plastic substrates and broaden its application area. Note de contenu : - INTRODUCTION : Anti-scratch coating - Anti-fog coating - Anti-reflection coating - Peelable coating - Miscellaneous coating - Commercial aspect
- Fig. 1 : Applications of plastic in various sectors
- Fig. 2 : Various properties enhancements by applying coating on plastic substrates
- Fig. 3 : Working of anti-scratch coating
- Fig. 4 : Application areas of plastics with anti-microbial coating
- Table 1 : Various plastic substrates, coatings applied on it and its applicationsEn ligne : https://drive.google.com/file/d/1eDh2p2oPSZ0L2ThHOtqWFv14RDTBBrG2/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=39554
in PAINTINDIA > Vol. LXXIII, N° 2 (02/2023) . - p. 52-64[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24015 - Périodique Bibliothèque principale Documentaires Disponible Coatings for solar panel / Shibajit Mukherjee in PAINTINDIA, Vol. LXIII, N° 11 (11/2013)
[article]
Titre : Coatings for solar panel Type de document : texte imprimé Auteurs : Shibajit Mukherjee, Auteur Année de publication : 2013 Article en page(s) : p. 68-76 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anti-réflectance
Composites
Dioxyde de titane
Energie solaire
Fluorure de magnésium
Générateurs photovoltaïques
GraphèneLe graphène est un cristal bidimensionnel (monoplan) de carbone dont l'empilement constitue le graphite. Il a été isolé en 2004 par Andre Geim, du département de physique de l'université de Manchester, qui a reçu pour cette découverte le prix Nobel de physique en 2010 avec Konstantin Novoselov. Il peut être produit de deux manières : par extraction mécanique du graphite (graphène exfolié) dont la technique a été mise au point en 2004, ou par chauffage d'un cristal de carbure de silicium, qui permet la libération des atomes de silicium (graphène epitaxié). Record en conduction thermique jusqu'à 5300 W.m-1.K-1. C'est aussi un matériaux conducteur.
Hydrophobie
Nanoparticules
Nanotubes
Revêtement antireflet:Peinture antireflet
Revêtements:Peinture
Silicium
SiliconesLes silicones, ou polysiloxanes, sont des composés inorganiques formés d'une chaine silicium-oxygène (...-Si-O-Si-O-Si-O-...) sur laquelle des groupes se fixent, sur les atomes de silicium. Certains groupes organiques peuvent être utilisés pour relier entre elles plusieurs de ces chaines (...-Si-O-...). Le type le plus courant est le poly(diméthylsiloxane) linéaire ou PDMS. Le second groupe en importance de matériaux en silicone est celui des résines de silicone, formées par des oligosiloxanes ramifiés ou en forme de cage (wiki).
Sol-gel, Procédé
Sulfure de zincIndex. décimale : 667.9 Revêtements et enduits Résumé : Paint/coatings are become increasingly important area of research for solar cells since it can be used for energy generation or improvement in efficiency and durability of existing photovoltaic technologies. The coatings with antireflective, super hydrophobic, transparency, weather scratch resistance etc. function or their combination are being used / attempted for this purpose. The amorphous Si or other thin film Si, cadmium telluride, copper indium gallium selenide etc and 3rd generation technologies such as nano-crystalline dye sensitized solar cell (DSSC) polymer/organic photovoltaic (OPV), hybrid solar cell technologies etc. are very important for coating technologist. With the availabiIity of wide variety of nano & polymeric architecture there exists a good possibility of combining them to get solar coatings for power generation. This can be made possible through shirting research focus on application of inexpensive materials and fabrication methods, disruptive combination materials, self assembly fabrication, morphology & size controls of materials, quantum dots, fullerene or their low cost alternatives etc. The challenge is to overcome the defect density and low mobility developing or combining materials to absorb across visible spectrum and get control led nanostructure architecture. Note de contenu : - BUILDING BLOCK OF A SOLAR PANEL
- FACTORS INFLUENCING SOLAR CELL EFFICIENCY : Thermodynamic efficiency limit - Quantum efficiency - Maximum power point - Fill factor
- TYPES OF SOLAR PANEL : Crystalline solar panels - This film solar of amorphous solar panels
- NEEDS OF COATING ON SOLAR PANEL
- TYPES OF COATING ON SOLAR PANEL : 1. Anti-reflective coating (AR coating) - Sn-doped indium oxide (ITO) AR coatings - Zinc oxide/porous siliocon AR coating - Black silicon AR coating - Magnesium fluoride/zinc sulphide (MgF2/ZnS) double layer AR coating - Sol-gel double layer AR coating - 2. CNT-graphene combined coating - 3. nanoparticle-based coating - 4. Super hydrophobic coating - 5. TiO2 based coatingPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=20337
in PAINTINDIA > Vol. LXIII, N° 11 (11/2013) . - p. 68-76[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 15933 - Périodique Bibliothèque principale Documentaires Disponible Durable silica antireflective coating prepared by combined treatment of ammonia and KH570 vapor / Jichen Huang in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 16, N° 2 (03/2019)
PermalinkFunctional & specialty coatings for enhanced end use performance / Mukesh Kumar Madhup in PAINTINDIA, Vol. LXIX, N° 11 (11/2019)
PermalinkHybrid antireflection structure with moth eye and multilayer coating for organic photovoltaics / Shigeru Kubota in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 12, N° 1 (01/2015)
PermalinkNovel-stratified low reflectivity anti-reflective coatings derived from self-assembly of high refractive index nanoparticles / Konstantinos Kourtakis in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 13, N° 6 (11/2016)
PermalinkNovel thermal and photo curable anti-reflective coatings using fluoroelastomer nanocomposites and self-assembly of nanoparticles / Konstantinos Kourtakis in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 13, N° 5 (09/2016)
PermalinkOptimized design of moth eye antireflection structure for organic photovoltaics / Shigeru Kubota in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 13, N° 1 (01/2016)
PermalinkPreparation of high-hardness silicon-based antireflective optical coatings at low temperature and without calcination / Feifei Xu in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 21, N° 5 (09/2024)
PermalinkPreparation of polymer/silica composite antiglare coatings on poly(ethylene terphathalate) (PET) substrates / Chao-Ching Chang in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 9, N° 5 (09/2012)
PermalinkPreparation of polysiloxane coating for laser application with improved curing property based on copolymerization modification / Tian-Yu Wang in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 19, N° 4 (07/2022)
PermalinkRecent advances in antireflective coatings for solar application / Kunal V. Yeole in PAINTINDIA, Vol. LXXI, N° 4 (04/2021)
PermalinkPermalinkReview on advances in antireflection coatings / Naresh Patil in PAINTINDIA, Vol. LXIX, N° 8 (08/2019)
PermalinkSize selectivity during dip coating of sol–gel silica-based antireflective coatings and its effect on the porosity of the coatings / Yair Tamar in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 13, N° 6 (11/2016)
PermalinkSol–gel hybrid films based on organosilanes with long alkyl chains in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 17, N° 5 (09/2020)
PermalinkSuperhydrophobic antireflective coating with high transmittance / Shing-Dar Wang in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 10, N° 4 (07/2013)
Permalink