Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Approche mécano-fiabiliste appliquée à l'étude de matériaux composites destinés au domaine ferroviaire / Frédéric Dau in REVUE DES COMPOSITES ET DES MATERIAUX AVANCES, Vol. 22, N° 1 (01-02-03-04/2012)
[article]
fait partie de Vol. 22, N° 1 - 01-02-03-04/2012 - Dynamical behaviour of polymers and composites (Bulletin de REVUE DES COMPOSITES ET DES MATERIAUX AVANCES) / Nadia Bahlouli
Titre : Approche mécano-fiabiliste appliquée à l'étude de matériaux composites destinés au domaine ferroviaire Type de document : texte imprimé Auteurs : Frédéric Dau, Auteur ; Laurent Guillaumat, Auteur ; Francis Cocheteux, Auteur ; Thomas Chauvin, Auteur Année de publication : 2012 Article en page(s) : p. 91-114 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Algorithmes génétiques
Composites
Composites -- Propriétés mécaniques
Endommagement (mécanique)
Fiabilité
Industrie ferroviaire -- Matériaux
Résistance au chocsIndex. décimale : 668.4 Plastiques, vinyles Résumé : Ce papier reflète une approche mécano-fiabiliste menée sur un matériau composite ferroviaire susceptible de recevoir des impacts basse vitesse. La masse et la hauteur de chute du projectile associées à la distance entre appuis constituent les paramètres variables considérés pour la plaque composite en configuration de flexion 3 points. La différence entre la force d’impact et la force limite acceptable constitue la fonction d’état limite G du problème de fiabilité. Dans le cadre de la méthode approchée FORM employée, l’indice de fiabilité β est recherché, pour différentes valeurs de la force seuil, en mettant en œuvre un algorithme génétique. Les résultats sont comparés à ceux obtenus par la méthode de Monte-Carlo. Note de contenu : - EXPERIMENTAL STAGE : Impact device - Composite samples and striker - Impact tests
- RESPONSE MODELISATION
- RELIABILITY APPROACH : Performance function - Failure probability assessment - Obtaining the reliability index β
- SIMULATIONS AND RESULTSPermalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=14646
in REVUE DES COMPOSITES ET DES MATERIAUX AVANCES > Vol. 22, N° 1 (01-02-03-04/2012) . - p. 91-114[article]Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 13854 - Périodique Bibliothèque principale Documentaires Disponible Comparison of numerical and experimental data in multi-objective optimization of a thermoplastic molded part in INTERNATIONAL POLYMER PROCESSING, Vol. XXVIII, N° 1 (03/2013)
[article]
Titre : Comparison of numerical and experimental data in multi-objective optimization of a thermoplastic molded part Type de document : texte imprimé Année de publication : 2013 Article en page(s) : p. 84-99 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Algorithmes génétiques
Analyse numérique
Conception assistée par ordinateur
Conception technique
Eléments finis, Méthode des
Gauchissement (matériaux)
Simulation par ordinateur
Surfaces de réponse (statistique)
Temps de cycle (production) -- Réduction
Thermoplastiques -- Moulage par injection
Tolérance (technologie)Index. décimale : 668.4 Plastiques, vinyles Résumé : Warpage reduction, dimensional tolerance accomplishment and time and cost saving are some of the most important problems in the injection molding production process. In this study, a real case of a thermoplastic injected part is analyzed. The mold for a pipeline connecting element has been designed, according to known technical and economical criterion to fulfill customer requirements. Particularly for this element, warpage of a specified surface and two diameter sizes are fundamental for correct part functionality and assembling. The analysis is centered on the effects of four process parameters, i. e. packing pressure, packing time, melt temperature and cooling time that heavily influence final results. A finite element model has been used to evaluate their effects on four important final objectives that are the geometrical entities and production cycle time. Each variable has been varied into its proper range, in accordance with a central composite design DoE plan; 25 simulations have been executed and results have been represented using response surfaces. Pareto Front for above listed objectives has been extracted using a genetic algorithm and the best set of parameters has been determined after application of specific selection criteria and a weighted objective function. After numerical evaluation, the CCD DoE plan has been experimentally repeated. Results have been measured on real components, and then represented with response surfaces as well. The same algorithm and objective function have been used for optimization, to determine the experimental optimum parameter set. Finally, the two parameter sets have been compared. Note de contenu : - PART SHAPE AND REQUIREMENTS
- MOLD DESIGN AND MACHINE SPECIFICATIONS : Mold layout and functionality - Feeding and cooling systems - Machine specifications
- FE MODEL
- DoE DESIGN AND OBJECTIVES DEFINITIONS
- NUMERICAL AND EXPERIMENTAL DoE RESULTS
- RESPONSE SURFACE REPRESENTATION
- MULTI-OBJECTIVE OPTIMIZATIONDOI : 10.3139/217.2699 En ligne : https://drive.google.com/file/d/1hG9icwf4rsDjZvDYw68JYbnVuiCFwljD/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=17776
in INTERNATIONAL POLYMER PROCESSING > Vol. XXVIII, N° 1 (03/2013) . - p. 84-99[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 14763 - Périodique Bibliothèque principale Documentaires Disponible Instrumental shade sorting of coloured fabrics using genetic algorithm and particle swarm optimisation / Elham Hasanlou in COLORATION TECHNOLOGY, Vol. 139, N° 4 (08/2023)
[article]
Titre : Instrumental shade sorting of coloured fabrics using genetic algorithm and particle swarm optimisation Type de document : texte imprimé Auteurs : Elham Hasanlou, Auteur ; Ali Shams Nateri, Auteur ; Hossein Izadan, Auteur Année de publication : 2023 Article en page(s) : p. 454-463 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Algorithmes génétiques
Colorimétrie
Dispositifs de tri
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995.
Algorithme
Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Cette méthode d'optimisation se base sur la collaboration des individus entre eux. Elle a d'ailleurs des similarités avec les algorithmes de colonies de fourmis, qui s'appuient eux aussi sur le concept d'auto-organisation. Cette idée veut qu'un groupe d'individus peu intelligents peut posséder une organisation globale complexe.
Ainsi, grâce à des règles de déplacement très simples (dans l'espace des solutions), les particules peuvent converger progressivement vers un minimum global. Cette métaheuristique semble cependant mieux fonctionner pour des espaces en variables continues. (Wikipedia)
Textiles et tissus teintsIndex. décimale : 667.3 Teinture et impression des tissus Résumé : In the present research by combination of Clemson Colour Clustering (CCC) instrumental shade sorting method and two metaheuristic algorithms, a genetic algorithm (GA) and a particle swarm optimisation (PSO), two new shade sorting methods, called CCCGA and CCCPSO were proposed. Then these proposed methods were applied on 16 well-prepered colour sets made of coloured fabrics and their results were compared using some important performance evaluation factors. The results of the methods were also compared with conventional CCC shade sorting method and a method based on CCC combined with k-means technique (CCCk). The results obtained from various shade sorting methods showed that the CCCGA and CCCPSO methods successfully sorted the coloured fabrics with high efficiency, and their results slightly outperformed the results of the CCC method. Note de contenu :
- INTRODUCTION : Genetic algorithm - Particle swarm optimisation
- MATERIALS AND METHODS : Preparation of samples and colour measurement - Determining the colour tolerance of coloured fabrics - Shade sorting using the genetic algorithm - Shade sorting using particle swarm optimisation
- RESULTS AND DISCUSSION : Performance evaluation factors of shade sorting methods - Number of sorted groups - Colour variation within the groups - Compactness of the points in sorted groups - Utilisation of the fabric
- Table 1 : Specifications and colour tolerance of the 16 fabric colour sets
- Table 2 : The values of the parameters and genetic operators used in the genetic algorithm
- Table 3 : The values of the parameters used in the particle swarm optimisation
- Table 4 : The colour variation within the groups formed by various shade sorting methods and the number of sorted groups by Clemson Colour Clustering (CCC) shade sorting
- Table 5 : The compactness of the points in sorted groups by different shade sorting methods
- Table 6 : The number of groups containing only one sample and the percentage of groups in low utilisation by different shade sorting methodsDOI : https://doi.org/10.1111/cote.12663 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12663 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=39682
in COLORATION TECHNOLOGY > Vol. 139, N° 4 (08/2023) . - p. 454-463[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 24152 - Périodique Bibliothèque principale Documentaires Disponible Optimal prediction of PKS: RSO modified alkyd resin polycondensation process using discrete-delayed observations, ANN and RSM-GA techniques / Chigozie F. Uzoh in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 14, N° 3 (05/2017)
[article]
Titre : Optimal prediction of PKS: RSO modified alkyd resin polycondensation process using discrete-delayed observations, ANN and RSM-GA techniques Type de document : texte imprimé Auteurs : Chigozie F. Uzoh, Auteur ; Okechukwu D. Onukwuli, Auteur Année de publication : 2017 Article en page(s) : p. 607-620 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Algorithmes génétiques
Analyse multivariée
Plan d'expérience
Polyalkydes
Polycondensation
Réseaux neuronaux (informatique)
Surfaces de réponse (statistique)Index. décimale : 667.9 Revêtements et enduits Résumé : Alkyd resins are widely used in the paint industry and although they have a long history about 70–100 years, today the developments in alkyds are still welcome and innovations are still needed. Artificial neural network (ANN) and response surface methodology based on a 25−1 fractional factorial design were used as tools for simulation and optimization of the polycondensation process for autooxidative drying alkyd resin from palm kernel stearin: rubber seed oil blend of 70:30 ratio. A feed forward neural network model with Levenberg–Marquardt back propagation training algorithm was adapted to predict the responses (conversion Y1, viscosity Y2, and molecular weight average Y3). The studied input variables were reaction time, temperature, catalyst concentration, oil ratio, and stirring rate. The performance of the RSM and ANN model showed adequate prediction of the responses in terms of the process factors, with MRPD of ±4.47% (Y1), ±2.08% (Y2), ±8.92% (Y3) and ±6.50% (Y1), ±3.31% (Y2), ±10.20% (Y3), respectively. The sensitivity analysis showed that while reaction time is the most effective process parameter, the interaction of the five process variables produced the most significant effect on the studied responses with the overall minimum MSE of 0.079. The optimization task performed using a genetic algorithm linked to the RSM model gave a viable, nondominated optimal response and optimum operating conditions regarding the route to high-quality resin at reduced material and operational costs. Overall, coupled RSM-GA was found to be a better tool for modeling and optimization of the alkyd resin production. Note de contenu : - MATERIALS AND METHODS : Materials - Synthesis of alkyd resin from modified palm kernel stearin - System prediction via RSM - Sensitivity analysis and system prediction via artificial neural network (ANN) model
- RESULTS AND DISCUSSION : Predictive model for system response aproximation via RSM - Reaction prediction via ANN - Optimization by coupled RSM-GA techniqueDOI : 10.1007/s11998-016-9881-6 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-016-9881-6.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=28569
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 14, N° 3 (05/2017) . - p. 607-620[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 18899 - Périodique Bibliothèque principale Documentaires Disponible Seeking a paper for digital printing with maximum gamut volume : a lesson from artificial intelligence / Maryam Ataeefard in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 19, N° 1 (01/2022)
[article]
Titre : Seeking a paper for digital printing with maximum gamut volume : a lesson from artificial intelligence Type de document : texte imprimé Auteurs : Maryam Ataeefard, Auteur ; Seyyed Mohamad Sadati Tilebon, Auteur Année de publication : 2022 Article en page(s) : p. 285-293 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Algorithmes génétiques
Couleur
Impression au laser
Impression numérique
Papier
Réseaux neuronaux (informatique)Index. décimale : 667.9 Revêtements et enduits Résumé : The color gamut of imaging media is significant for the reproduction of color images because its magnitude directly affects the degree to which colors change during the printing process. Over the last few years, digital impression technology has started to play a substantial role in the printing industry due to the quest for short runs and variable information printing. The color gamut of electrophotographic digital printing depends on various parameters including the printer and toner, but especially the properties (whiteness, roughness, and gloss) of the paper, which influence the final printed color gamut and replication quality. Artificial intelligence approaches are applied herein for the first time to choose and predict the performance of a paper with appropriate properties to achieve the maximum color gamut. A genetic algorithm-based computer code is developed to optimize the architecture of an artificial neural network, thereby yielding an accurate model to predict the color gamut achievable in electrophotographic color printing. The gamut volume was generated using an Eye-One spectrophotometer, ProfileMaker, and ColorThink software. The properties of 11 dissimilar types of paper were assessed by atomic force microscopy, spectrophotometer, and goniophotometer. The results indicate that the reproducibility depended considerably on the features of the paper. Although high whiteness and gloss increased the color gamut volume, and high roughness decreased the reproducibility of the printing machine, the artificial intelligence approach provided the opportunity to achieve a high gamut volume with low gloss and high roughness. Note de contenu : - Printing trials
- Measurement of color gamut and paper properties
- Model development and optimization
- Table 1 : Scenarios considered as internal data for the constructed model
- Table 2 : Parameter values used in NSGA II optimization
- Table 3 : Reliability of MLP ANNs with different structures and one hidden layerDOI : https://doi.org/10.1007/s11998-021-00393-6 En ligne : https://link.springer.com/content/pdf/10.1007/s11998-020-00393-6.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37158
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 19, N° 1 (01/2022) . - p. 285-293[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23313 - Périodique Bibliothèque principale Documentaires Disponible Soft computing in textile engineering / Abhijit Majumdar / Cambridge [United Kingdom] : Woodhead Publishing Ltd (2011)
PermalinkUsing multi-objective evolutionary algorithms for optimization of the cooling system in polymer injection molding / C. Fernandes in INTERNATIONAL POLYMER PROCESSING, Vol. XXVII, N° 2 (05/2012)
Permalink