Accueil
Catégories
Ajouter le résultat dans votre panier Affiner la recherche
Etendre la recherche sur niveau(x) vers le bas
Anti-aging performance of cardanol grafted onto polypropylene by reactive extrusion / J.-R. Lin in INTERNATIONAL POLYMER PROCESSING, Vol. XXX, N° 3 (07/2015)
[article]
Titre : Anti-aging performance of cardanol grafted onto polypropylene by reactive extrusion Type de document : texte imprimé Auteurs : J.-R. Lin, Auteur ; J.-H. Lin, Auteur ; Q.-H. Chen, Auteur Année de publication : 2015 Article en page(s) : p. 310-316 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Allongement à la rupture
Cardanol
Copolymères -- Propriétés mécaniques
Copolymères greffés
Elasticité
Extrusion réactive
Polypropylène
Résistance à la rupture
Résistance des matériauxIndex. décimale : 668.4 Plastiques, vinyles Résumé : The cardanol grafted onto polypropylene (CAPP) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol, which could improve the inherent defects of PP such as chemical inertness and hydrophobicity. Moreover, the cardanol grafted onto PP could resolve the degradation of PP during the process of reactive extrusion, storage and application. In this paper, the yield strength, tensile strength, elongation at break of modified and unmodified PPs were tested during the aging process. A possible aging mechanim of PP and anti-aging mechanism of cardanol grafted onto PP were proposed. Results showed that the initiator dicumyl peroxide caused the degradation of PP chains during the aging processing. After being aged for 24 h, the yield strength CAPP0 decreased from 28 MPa to 15 MPa and the elongation at break reduced by 795%. CAPPs possessed outstanding anti-aging performance owing to the cross-linking and entanglement of the side chains of cardanol grafted onto PP. The yield strength, tensile strength and the elongation at break of CAPP5 changed lightly even when it was in long-term irradiation for 480 h. The CAPPs had better anti-aging properties than the mixture of PP and 5% of cardanol. CAPP containing 3% of cardanol could effectively prevent the degradation of the main chain polypropylene. Note de contenu : - EXPERIMENTAL : Materials - Preparation of cardanol grafted onto polypropylene (CAPP) - Mechanical properties testing
- RESULTS AND DISCUSSION : Yield strength of cardanol grafted onto polypropylene (CAPP) - Tensile strength of cardanol grafted onto polypropylene (CAPP) - Elongation at break of CAPP - Deduction of aging mechanism - Comparison of aging performance of CAPPs with CAPPm - The effect of cardanol concentration on anti-ageing properties of CAPPsDOI : 10.3139/217.2944 En ligne : https://drive.google.com/file/d/1wZfxne7fYnTZfwfaVmr_nyFDB3gT4KA7/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=24325
in INTERNATIONAL POLYMER PROCESSING > Vol. XXX, N° 3 (07/2015) . - p. 310-316[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 17309 - Périodique Bibliothèque principale Documentaires Disponible Antiwetting and low-surface-energy behavior of cardanol-based polybenzoxazine-coated cotton fabrics for oil–water separation / P. Prabunathan in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 17, N° 6 (11/2020)
[article]
Titre : Antiwetting and low-surface-energy behavior of cardanol-based polybenzoxazine-coated cotton fabrics for oil–water separation Type de document : texte imprimé Auteurs : P. Prabunathan, Auteur ; P. Elumalai, Auteur ; G. Dinesh Kumar, Auteur ; M. Manoj, Auteur ; A. Hariharan, Auteur ; G. Rathika, Auteur ; M. Alagar, Auteur Année de publication : 2020 Article en page(s) : p. 1455-1469 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Analyse spectrale
Angle de contact
Caractérisation
Cardanol
CotonLe coton est une fibre végétale qui entoure les graines des cotonniers "véritables"(Gossypium sp.), un arbuste de la famille des Malvacées. Cette fibre est généralement transformée en fil qui est tissé pour fabriquer des tissus. Le coton est la plus importante des fibres naturelles produites dans le monde. Depuis le XIXe siècle, il constitue, grâce aux progrès de l'industrialisation et de l'agronomie, la première fibre textile du monde (près de la moitié de la consommation mondiale de fibres textiles).
Eau
Enduction textile
Morphologie (matériaux)
Polybenzoxazine
Séparation (technologie)
Séparation huile/eau
Spectroscopie de photoélectronsIndex. décimale : 667.9 Revêtements et enduits Résumé : In the present work, the surface behavior of cotton fabrics coated with a series of bio-based polybenzoxazines is explored. Herein, we report the design and synthesis of bio-based benzoxazine monomers (C-x) using cardanol (C) and seven different amines (x = ba, ha, dda, oda, ddm, jef, and fa). The molecular structures of the benzoxazine monomers have been confirmed using FTIR and NMR analyses. The microstructure of the polybenzoxazine-coated cotton fabrics observed from FE-SEM reveals that formation of rough nanostructure is influenced by molecular structure of monomers. Further, surface analysis shows that poly(C-dda)-coated cotton fabric offers superior water contact angle (WCA = 155° ± 3) with low sliding angle (6°). Also, poly(C-dda)-coated cotton fabric delivers the lowest surface energy (14.1 mN/m) and high resistance against acidic and alkaline media. Subsequently, oil–water separation investigation shows that the poly(C-dda)-coated cotton fabric yields 99% of separation efficiency with flux value of 7200 L/m2h. Thus, the cardanol-based polybenzoxazine-coated cotton fabrics prepared in the present work can find application in the field of oil–water separation due to their superior water-repellent nature. Note de contenu : - EXPERIMENTAL SECTION : Materials - Synthesis of cardanol-based benzoxazine monomers (C-x) - Preparation of benzoxazine-coated cotton fabrics - Characterization - Oil–water separation test
- RESULTS AND DISCUSSION : Spectral analysis - Curing behavior of benzoxazine monomers - Spectral analysis of the coated fabrics - Surface properties - Morphology of the polybenzoxazine-coated cotton fabrics - XPS analysis - Oil–water separationDOI : https://doi.org/10.1007/s11998-020-00365-w En ligne : https://link.springer.com/content/pdf/10.1007/s11998-020-00365-w.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34952
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 17, N° 6 (11/2020) . - p. 1455-1469[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22458 - Périodique Bibliothèque principale Documentaires Disponible Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance / Yun Hu in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 16, N° 2 (03/2019)
[article]
Titre : Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance Type de document : texte imprimé Auteurs : Yun Hu, Auteur ; Guodong Feng, Auteur ; Qianqian Shang, Auteur ; Caiying Bo, Auteur ; Puyou Jia, Auteur ; Chengguo Liu, Auteur ; Feng Xu, Auteur ; Yonghong Zhou, Auteur Année de publication : 2019 Article en page(s) : p. 499-509 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Biomatériaux
Caractérisation
Cardanol
Chimie -- Essais et réactifs
Copolymère uréthane acrylate
Diluants
Huile de ricin et constituants
Polymères hautes performances
Revêtements -- Propriétés mécaniques
Revêtements -- Séchage sous rayonnement ultravioletIndex. décimale : 667.9 Revêtements et enduits Résumé : A UV-curable cardanol-based monomer (ECGE) was prepared using cardanol and epichlorohydrin, followed by epoxidation of the unsaturation in alkyl side chains of cardanol segments. After its chemical structure was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance (1H NMR), ECGE was used as a reactive diluent to copolymerize with castor oil-based polyurethane acrylate (PUA) and a series of UV-curable coatings were prepared. Results showed that the viscosity and volume shrinkage of the UV-curable PUA system decreased significantly after the introduction of cardanol-based monomer while maintaining reasonably high bio-renewable contents; when containing 50% of ECGE, the biomass content reaches 66.2%, which is 1.41 times that of pure resin. In addition, the coating properties were evaluated to determine hardness, adhesion, flexibility, and water resistance. The properties of UV-curable thermoset were also studied using tensile testing, dynamic mechanical thermal analysis, and thermogravimetric analysis. The cardanol-based coatings showed excellent adhesion, flexibility, medium hardness, and enhanced char yield although tensile strength, tensile modulus and glass transition temperatures were somewhat diminished. All these performances can be attributed to the unique architectures of ECGE that combined the structural features of rigid benzene ring and long flexible alkyl chains. The UV-curing behavior was determined using real-time IR, and the results indicated that the conversion of unsaturated bond was increased with more concentration of ECGE. Note de contenu : - MATERIALS - Characterization - Synthesis of epoxidized cardanol glycidyl ether (ECGE) - Preparation of the UV-curable coatings
- RESULTS AND DISCUSSION : Structure characterization of ECG - Bio-based content of the UV-curable coatings - Viscosity - UV-curing behaviors of the UV-curable bio-based coatings - Volumetric shrinkage of the UV-curable coatings - Gel contents of the UV-curable coatings - Tensile properties - DMA of the UV-curable bio-based coatings - Thermal properties of the UV-curable bio-based coatings - Coatings properties of the UV-curable bio-based coatings - Proposed dual-curing mechanismDOI : 10.1007/s11998-018-0128-6 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-018-0128-6 Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32420
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 16, N° 2 (03/2019) . - p. 499-509[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20894 - Périodique Bibliothèque principale Documentaires Disponible Card phenol based benzoxazine resin and its blends with epoxy and saturated polyester for coating application / P. Katkar in SURFACE COATINGS INTERNATIONAL, Vol. 103.6 (11-12/2020)
[article]
Titre : Card phenol based benzoxazine resin and its blends with epoxy and saturated polyester for coating application Type de document : texte imprimé Auteurs : P. Katkar, Auteur ; I. Sancheti, Auteur ; D. S. Bhutada, Auteur ; A. Rajput, Auteur ; S. Thorat, Auteur ; S. Radhakrishnan, Auteur ; A. Sabnis, Auteur ; Prakash A. Mahanwar, Auteur ; M. B. Kulkarni, Auteur Année de publication : 2020 Article en page(s) : p. 342-349 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Benzoxazine
Caractérisation
Cardanol
Epoxydes
Essais de brouillard salin
EthanolamineL'éthanolamine, également appelée 2-aminoéthanol ou monoéthanolamine, est un composé chimique organique qui est à la fois une amine primaire (par son groupe amine) et un alcool primaire (par son groupe hydroxyle). À l'instar des autres amines, la monoéthanolamine se comporte en base faible. L'éthanolamine est un liquide toxique, inflammable, corrosif, incolore et visqueux ; son odeur est similaire à celle de l'ammoniac.
Paraformaldéhyde
Phénols
Polybenzoxazine
Polyesters
Résistance à l'abrasion
Résistance au chocs
Résistance chimique
Réticulation (polymérisation)
Revêtements -- Propriétés mécaniques
Revêtements organiquesIndex. décimale : 667.9 Revêtements et enduits Résumé : A free hydroxyl-containing benzoxazine monomer was synthesised using bio-based card phenol, paraformaldehyde and ethanolamine by a Mannich condensation reaction. The hydroxyl-containing benzoxazine monomer synthesised was characterised by FT-IR spectroscopy. Curing of the benzoxazine was monitored by using Differential Scanning Calorimetry (DSC). The free hydroxyl group in the benzoxazine monomer helps to enhance the adhesion of polybenzoxazine coating with the metal substrate. The synthesised benzoxazine was copolymerised with an epoxy resin and a saturated polyester resin for potential coating applications and their curing was monitored using DSC and FT-IR spectroscopy. The benzoxazine-epoxy copolymerised system demonstrated enhanced mechanical, chemical and thermal properties compared to the benzoxazine-saturated polyester system as well as compared with neat polybenzoxazine. Note de contenu : - EXPERIMENTAL : Raw materials - Synthesis of card phenol-based benzoxazine - Blend preparation - Characterization
- RESULTS AND DISCUSSION : FT-IR analysis - DSC analysis - TGA analysis - Mechanical properties - Chemical resistance - Solvent scrub resistance - Stalt-spray test - Water absorption
- Scheme 1 : Synthesis of card phenol-based benzoxazine monomer and thermal polymerisation
- Scheme 2 : Curing reaction of hydroxyl-functional benzoxazine and epoxy resin
- Scheme 3 : Curing reaction of hydroxyl-functional benzoxazine and saturated polyester resin
- Scheme 4 : Chemical structure of unsaturated card phenol
- Table 1 : Sample compositions of BZ-EP and BZ-SPE coatings
- Table 2 : Char yield, temperature at 5% weight loss (T5%) and temperature at 10% weight loss (T10%) for polybenzoxazine and all BZ-EP and BZ-SPE compositions
- Table 3 : Mechanical properties of polybenzoxazine, BZ-EP and BZ-SPE coatings
- Table 4 : Acid and alkali resistance of polybenzoxazine, BZ-SPE coatings
- Fig. 1 : a) Polybenzoxazine, b) BZ-EP BZ 30/EP 70, c) BZ-SPE BZ 40/SPE 60 coating on mild steel panels
- Fig. 2 : FT-IR analysis of a) benzoxazine, b) saturated polyester and c) BZ-SPE BZ 40/SPE 60
- Fig. 3 : DSC thermogram of a) BZ-SPE and b) BZ-E° in temperature range of 30 to 550°C
- Fig. 4 : TGA thermograms of a) polybenzoxazine, b) saturated polyester, c) 30BZ/70EP and d) 40BZ/60SPE
- Fig. 5 : Scratch hardness and impact resistance of a) BZ-EP and b) BZ-SPE coatings
- Fig. 6 : Coating surface before and after the salt spray test in 3.5% NaCI solution for 120 hr (a) Polybenzoxazine, (b) BZ-EP and (c) BZ-SPE coatingsEn ligne : https://drive.google.com/file/d/1O2NT4Z_NqEeo0vFz5t-6Bq2E9luEEgAB/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34921
in SURFACE COATINGS INTERNATIONAL > Vol. 103.6 (11-12/2020) . - p. 342-349[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22448 - Périodique Bibliothèque principale Documentaires Disponible Cardanol – an eco-friendly isocyanate blocking agent / Yun mi Kim in COATINGS WORLD, Vol. 24, N° 2 (02/2019)
[article]
Titre : Cardanol – an eco-friendly isocyanate blocking agent : Deblocking performances and methods to optimize deblocking temperature Type de document : texte imprimé Auteurs : Yun mi Kim, Auteur ; Anbu Natesh, Auteur ; Pietro Campaner, Auteur Année de publication : 2019 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Cardanol
Catalyseurs
Isocyanates
Polymères -- Détérioration
Polypropylène glycol
Polyuréthanes
PrépolymèresUn pré-polymère ou prépolymère est un oligomère ou un polymère présentant des groupes réactifs qui lui permettent de participer à une polymérisation ultérieure et d’incorporer ainsi plusieurs unités monomères dans au moins une chaîne de la macromolécule finale.
Les pré-polymères peuvent être di-fonctionnels (c'est le cas des pré-polymères téléchéliques) ou plurifonctionnels. Dans ce dernier cas, ils sont utilisés pour la fabrication de polymères thermodurcissables par réticulation.
Structure chimiqueIndex. décimale : 667.9 Revêtements et enduits Résumé : Cardanol, a well-known non-edible natural oil derived from the cashew nut shell liquid, is a USDA certified bio-based product.
Once used as a very high purity grade (NX-2026,TM 3-pentadeca-dienyl-phenol) in PU prepolymers, this substance has demonstrated various benefits including favorable deblocking conditions, lower viscosity, and excellent storage stability compared to commonly used phenolic compounds.
One of the most known deblocking methods involves exposure to elevated temperatures, i.e., 150 °C – 200 °C. However, not all substrates (e.g., plastics) and applications can accommodate such high temperatures for deblocking, thus, the possibility to optimize deblocking conditions can be a valuable tool to further expand the applicability of 3-pentadeca-dienyl-phenol as a label-friendly polyurethane prepolymers’ blocking agent.
In this study, we present different approaches to control NX-2026 deblocking conditions. First, 3-pentadeca-dienyl-phenol blocked prepolymers were prepared starting from different diols (e.g., PPG, polyester, CNSL-based) as well as aromatic (MDI, TDI) and aliphatic (HDI, IPDI) isocyanates. These were subsequently characterized for their deblocking temperatures and used as model substrates for the study. Key factors for controlling deblocking conditions such as catalysts, deblocking agents (amines, polyols), and solvents were investigated.Note de contenu : - Fig. 1 : Anacardium Occidentale fruit (left) and schematic process for cardanol recovery
- Fig. 2 : Examples of cardanol’s potential functionalization
- Fig. 3 : NX-2026 (3-pentadeca-dienyl-phenol) chemical structure
- Fig. 4 : Possible reactions of blocked isocyanates
- Fig. 5 : Proposed mechanism for PU depolymerization catalyzed by dibutyltin dilaurate
- Fig. 6 : Effect of chain extender (amine) on deblocking temperatures of NX-2026TM-blocked prepolymers
- Table 1 : Appearance and deblocking temperatures of blocked isocyanates
- Table 2 : Deblocking temperature and time for blocked PPG prepolymers
- Table 3 : Typical average deblocking temperatures for different PU substrates
- Table 4 : Effect of catalysts on deblocking temperatures of NX-2026-isocyanate adducts
- Table 5 : Effect of catalysts on deblocking temperatures of NX-2026-blocked prepolymers
- Table 6 : Effect of chain extender (polyol) and catalysts on deblocking temperatures of NX-2026-blocked prepolymers
- Table 7 : Use of catalysts to tune deblocking temperatures on other types of NX-2026-blocked prepolymers
- Table 8 : MW variation (%, determined by GPC) of NX-2026-blocked PPG prepolymers in presence of very effective deblocking catalysts Tegoamin 33 and DABCO K15 after storage at 50 °C for 10 days
- Table 9 : MW variation (determined by GPC) of NX-2026-blocked PPG prepolymers in presence of a chain extender (propoxylated sorbitol polyol) and of very effective deblocking catalysts Tegoamin 33 and DABCO K15 after storage at 50 °C for 10 days
- Table 10 : Effect of chain extender (polyol) and alternative catalysts on deblocking temperatures of NX-2026-blocked prepolymers
- Table 11 : MW variation (determined by GPC) of NX-2026-blocked PPG prepolymers in presence of a chain extender (propoxylated sorbitol polyol) and of alternative catalysts after storage at 50 °C for 10 days
- Table 12 : Effect of chain extender (amine) and catalysts on deblocking temperatures of NX-2026-blocked prepolymersEn ligne : https://www.coatingsworld.com/issues/2019-02-01/view_technical-papers/cardanol-- [...] Format de la ressource électronique : Html Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32507
in COATINGS WORLD > Vol. 24, N° 2 (02/2019)[article]Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Cardanol based epoxy coatings : studies on chemical, mechanical and thermal properties / Thorat Dipika in PAINTINDIA, Vol. LXIX, N° 9 (09/2019)
PermalinkCathodic electrodeposition of self-curable polyepoxide resins based on cardanol / Raju Pramod Kumar in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 8, N° 5 (10/2011)
PermalinkCorrosion protection of benzoxazine and cardanol-doped polyaniline coatings / Raiane Valenti Gonçalves in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 19, N° 2 (03/2022)
PermalinkCrystallization behavior of polypropylene-graft-cardanol prepared by reactive extrusion / Q. Chen in INTERNATIONAL POLYMER PROCESSING, Vol. XXVIII, N° 1 (03/2013)
PermalinkDevelopment of functionalized SiO2–TiO2 reinforced cardanol and caprolactam modified diamine based polybenzoxazine nanocomposites for high performance applications in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 16, N° 6 (11/2019)
PermalinkEffect of cardanol diol on the synthesis, characterization, and film properties of aqueous polyurethane dispersions / Kattimuttathu I. Suresh in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 11, N° 4 (07/2014)
PermalinkEffect of pendant functional groups on curing kinetics and final properties of cardanol-based benzoxazines / Kunal Wazarkar in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 15, N° 3 (05/2018)
PermalinkEnvironmentally preferred coatings from modified cardanol-based epoxidized novolac resin / Ranjana Yadav in PAINTINDIA, Vol. LVIII, N° 6 (06/2008)
PermalinkEpoxy resin from cardanol as partial replacement of bisphenol-A-based epoxy for coating application / Mukesh Kathalewar in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 11, N° 4 (07/2014)
PermalinkFacile synthesis of a cardanol-based levelling agent as a biodegradable alternative to tristyrylphenol ethoxylates for the dyeing of polyester fabric / Kun Chen in COLORATION TECHNOLOGY, Vol. 138, N° 3 (06/2022)
PermalinkGreen initiatives in resin synthesis : A sustainable approach / Jitendra Khanderay in PAINTINDIA, Vol. LXXXIII, N° 11 (11/2023)
PermalinkInvestigation of cardanol-based reactive polyamide as a crosslinker in epoxy zinc-rich primer / Dinesh Balgude in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 14, N° 3 (05/2017)
PermalinkMechanical, chemical, and curing characteristics of cardanol–furfural-based novolac resin for application in green coatings / Riya Srivastava in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 12, N° 2 (03/2015)
PermalinkPermalinkNovel CNSL-based waterborne Zn-rich primer systems for protective coatings / Hong Xu in COATINGS TECH, Vol. 15, N° 4 (04/2018)
Permalink