Accueil
Détail de l'auteur
Auteur Hao Wu |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Intumescent alkali silicate and geopolymer coatings against hydrocarbon fires / Burak Ulusoy in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 20, N° 1 (01/2023)
[article]
inJOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 20, N° 1 (01/2023) . - p. 233-248
Titre : Intumescent alkali silicate and geopolymer coatings against hydrocarbon fires Type de document : texte imprimé Auteurs : Burak Ulusoy, Auteur ; Aixiao Fu, Auteur ; Hafeez Ahmadi, Auteur ; Kim Dam-Johansen, Auteur ; Hao Wu, Auteur Année de publication : 2023 Article en page(s) : p. 233-248 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Acier L'acier est un alliage métallique utilisé dans les domaines de la construction métallique et de la construction mécanique.
L'acier est constitué d'au moins deux éléments, le fer, très majoritaire, et le carbone, dans des proportions comprises entre 0,02 % et 2 % en masse1.
C'est essentiellement la teneur en carbone qui confère à l'alliage les propriétés du métal qu'on appelle "acier". Il existe d’autres métaux à base de fer qui ne sont pas des aciers comme les fontes et les ferronickels par exemple.
Carbonate de calciumLe carbonate de calcium (CaCO3) est composé d'un ion carbonate (CO32-) et d'un ion calcium (Ca2+), sa masse molaire est de 100,1 g/mole.
C'est le composant principal du calcaire et de la craie, mais également du marbre. C'est aussi le principal constituant des coquilles d'animaux marins, du corail et des escargots.
Cendres volantes
Enrobage (technologie)
Essais de comportement au feu
GéopolymèresLes géopolymères sont la réciproque des polymères organiques. À la place de dérivés du pétrole et de la chaîne carbonée, on utilise de la matière minérale composée de silice et d’alumine.
Les géopolymères sont basés sur des alumino-silicates désignés sous le terme poly(sialate), qui est une abréviation de poly(silico-oxo-aluminate) ou (-Si-O-Al-O-)n (soit n le degré de polymérisation). La structure chimique de la Figure 1 montre un géopolymère poly(sialate-siloxo) résultant d'une géosynthèse de poly(silisique) acide (SiO2)n et de potassium alumino-silicate, en milieu alcalin (KOH, NaOH). Dans cette structure, le groupement sialate (Si-O-Al-O-) est un agent de réticulation.
On pense que le mécanisme de la synthèse géochimique se fait par l'intermédiaire d'oligomères (dimère, trimère) qui constituent les véritables groupements structuraux unitaires formant une structure macromoléculaire tridimensionnelle.
IgnifugeantsComposé chimique utilisé pour réduire l'inflammabilité. Il peut être incorporé au produit durant sa fabrication ou appliqué ultérieurement à sa surface.
Intumescence (chimie)
Kaolin
Métaux -- Revêtements protecteurs
Silicates alcalins
ThermochimieIndex. décimale : 667.9 Revêtements et enduits Résumé : This work focuses on the investigation of the fire protection of steel using inorganic intumescent alkali silicate and geopolymer (alkali aluminosilicate) coatings at temperatures relevant for hydrocarbon fires, as described in the UL1709 standard. Pure alkali silicate coatings based on Na, K, or a mixture of these with Li exhibited high initial expansion followed by melting. In comparison, Li-silicate coatings expanded less but demonstrated significantly higher thermal stability. Increasing the SiO2/Na2O molar ratio prolonged the fire protection time, explained by the lower melt formation proposed by global equilibrium calculations. The presence of melting in the high expanding alkali silicate systems limits their use in hydrocarbon fire conditions. In comparison to pure alkali silicates, geopolymer coatings with kaolin, metakaolin, and fly ash and additional CaCO3 displayed a higher thermal stability confirmed by global equilibrium calculations. The kaolin-based coating provided the best fire protection with a critical time of 37.6 min, explained by its high expansion compared to metakaolin and fly ash-based coatings. Examining the influence of CaCO3 and kaolin content suggests that an optimum exists for the kaolin coatings in terms of expansion, fire protection, and thermal stability. The best performing kaolin coating (37.6 min) had a lower fire protection compared to a state-of-the-art commercial organic hydrocarbon coating (44.2 min), caused by their differences in internal structure. The commercial coating expanded to a more compact microporous solid, while the kaolin coating qualitatively displayed a higher proportion of macropores. This in turn suggests that future work must be performed to further improve the internal structure of the kaolin-based coatings to ensure good fire protection. Note de contenu : - EXPERIMENTAL : Materials - Coatings - Furnace hydrocarbon fire (UL1709) tests - Thermodynamic calculations (FactSage) - SEM/EDX
- RESULTS AND DISCUSSION : Alkali silicate coatings - Alkali aluminosilicate (geopolymer) coatings - Geopolymer coating versus commercial hydrocarbon coating
- Table 1 : Composition of alkali silicate solutions in wt% with SiO2/M2O molar ratios of 3.4 and 4.2, where M = K, Li, and Na. For the mixture, the molar fractions of alkali silicates were Na2O = K2O = 0.37 and Li2O = 0.26
- Table 2 : Composition of geopolymer solutions (molar: 1.2 Na2O-Al2O3–6.5 SiO2-1.3 CaCO3-31 H2O) in wt% with different Al-source
- Table 3 : Fitted drying constant mAS∗, describing the steady-state weight of partially dehydrated product. Liquid (H2O) to solid (L/S) weight ratio and dry matter content in the initial mixture calculated from the coating compositions. Estimated solid-bound H2O content in coating determined from the difference between mAS∗ and the dry matter content
- Table 4 : Expansion and mass loss data of kaolin, metakaolin, and fly ash coatings measured after exposure
- Table 5 : Identification and molecular formula of compositions with varying kaolin content. Note, K22 = base kaolin coating
- Table 6 : Expansion and mass loss data of coatings with varying kaolin content measured after exposure
- Table 7 : Identification and molecular formula of compositions with varying kaolin content. Ca10 = base kaolin coating
- Table 8 : Expansion, mass loss data, and qualitative-evaluated mechanical properties of coatings with varying CaCO3 content measured after exposureDOI : https://doi.org/10.1007/s11998-022-00659-1 En ligne : https://link.springer.com/content/pdf/10.1007/s11998-022-00659-1.pdf?pdf=button Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=38839 [article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23928 - Périodique Bibliothèque principale Documentaires Disponible