Accueil
Détail de l'auteur
Auteur C. Burgstaller |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Enhanced infrared heating of thermoplastic composite sheets for thermoforming processes / M. Längauer in INTERNATIONAL POLYMER PROCESSING, Vol. 36, N° 1 (2021)
[article]
Titre : Enhanced infrared heating of thermoplastic composite sheets for thermoforming processes Type de document : texte imprimé Auteurs : M. Längauer, Auteur ; G. Zitzenbacher, Auteur ; C. Burgstaller, Auteur ; C. Hochenauer, Auteur Année de publication : 2021 Article en page(s) : p. 35-43 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Chauffage
Composites à fibres -- Thermoformage
Composites à fibres de carbone
Composites à fibres de verre
Polyamide 6
Polyamide 66
Rayonnement infrarougeIndex. décimale : 668.4 Plastiques, vinyles Résumé : Thermoforming of thermoplastic composites attracts increasing attention in the community due to the mechanical performance of these materials and their recyclability. Yet there are still difficulties concerning the uniformity of the heating and overheating of parts prior to forming. The need for higher energy efficiencies opens new opportunities for research in this field. This is why this study presents a novel experimental method to classify the efficiency of infrared heaters in combination with different thermoplastic composite materials. In order to evaluate this, different organic sheets are heated in a laboratory scale heating station until a steady state condition is reached. This station mimics the heating stage of an industrial composite thermoforming device and allows sheets to slide on top of the pre-heated radiator at a known distance. By applying thermodynamic balances, the efficiency of chosen parameters and setups is tested. The tests show that long heating times are required and the efficiency of the heating is low. Furthermore, the efficiency is strongly dependent on the distance of the heater to the sheet, the heater temperature and also the number of heating elements. Yet, using a full reflector system proves to have a huge effect and the heating time can be decreased by almost 50%. Note de contenu : - Specific heat capacity
- Heating tests without reflectors
- Heating tests using reflectors
- Table 1 : Input parameters for the calculation of the enthalpy and heat flux (a derived from material data sheet)DOI : https://doi.org/10.1515/ipp-2020-3923 En ligne : https://drive.google.com/file/d/1NRCKw4IGMW7OJRvSI5wngwS8omSB2xAy/view?usp=shari [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=36344
in INTERNATIONAL POLYMER PROCESSING > Vol. 36, N° 1 (2021) . - p. 35-43[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23731 - Périodique Bibliothèque principale Documentaires Disponible Modification of PLA by reactive extrusion for industrial fiber applications / C. Burgstaller in CHEMICAL FIBERS INTERNATIONAL, Vol. 72, N° 1 (03/2022)
[article]
Titre : Modification of PLA by reactive extrusion for industrial fiber applications Type de document : texte imprimé Auteurs : C. Burgstaller, Auteur ; Simon Riepler, Auteur Année de publication : 2022 Article en page(s) : p. 40-41 Langues : Anglais (eng) Catégories : Alliages polymères
Allongement à la rupture
Biopolymères -- Propriétés mécaniques
Elasticité
Extrusion réactive
Fibres textiles -- Propriétés mécaniques
Fibres textiles synthétiques
Matériaux -- Modifications chimiques
Polylactique, AcideL'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
ThermoplastiquesUne matière thermoplastique désigne une matière qui se ramollit (parfois on observe une fusion franche) d'une façon répétée lorsqu'elle est chauffée au-dessus d'une certaine température, mais qui, au-dessous, redevient dure. Une telle matière conservera donc toujours de manière réversible sa thermoplasticité initiale. Cette qualité rend le matériau thermoplastique potentiellement recyclable (après broyage). Cela implique que la matière ramollie ne soit pas thermiquement dégradée et que les contraintes mécaniques de cisaillement introduites par un procédé de mise en forme ne modifient pas la structure moléculaire.Index. décimale : 677.4 Textiles artificiels Résumé : In this work, the reactive blending of PLA with other thermoplastics was investigated to improve the elasticity of PLA fibers. It was found that it is possible to improve the elongation at break from 50% up to 2000/o at comparable tenacity values by properly designing the blend and the reactive process with it. Future investigations will need to clarify the stability of these processes in a larger scale, as well as the biodegradability of such blends. En ligne : https://drive.google.com/file/d/1YCNUMyg71aLc6gfHwGAUzJlxUQG50M11/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37399
in CHEMICAL FIBERS INTERNATIONAL > Vol. 72, N° 1 (03/2022) . - p. 40-41[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23331 - Périodique Bibliothèque principale Documentaires Disponible