Accueil
Détail de l'auteur
Auteur Archana Arjula |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Unsupervised machine learning methods to understand relaxation effect of fragrances through EEG technique / Chinmay Mhaskar in SOFW JOURNAL, Vol. 147, N° 9 (09/2021)
[article]
Titre : Unsupervised machine learning methods to understand relaxation effect of fragrances through EEG technique Type de document : texte imprimé Auteurs : Chinmay Mhaskar, Auteur ; Vaibhav Kaushik, Auteur ; Archana Arjula, Auteur Année de publication : 2021 Article en page(s) : p. 42-51 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Aromathérapie
Huiles essentielles
Parfums
RelaxationIndex. décimale : 668.5 Parfums et cosmétiques Résumé : Objective: The objective was :1) To validate relaxation effects of fragrances proposed in the previous work using Unsupervised Machine Learning methods (USL). 2) To compare and quantify the relaxation potential of fragrances by establishing a criterion (metric).
Methods : K-Means and Principal Component Analysis (PCA) were the employed USL methods. The data was a result of administering 4 essential oil fragrances (ALO (control), ECO, Lavender and AROMA) to 50 participants. PCA aided the characterisation of fragrances as function of 8 waves based on the relaxation induced.
Results : The result from the previous work i.e. aromatherapy induced higher relaxation and, Alpha waves were good indicators of relaxation, was validated by K-Means. Higher Alpha wave intensity was associated with fragrance administration. Principal waves for olfactory stimulation were identified as Alpha, Beta and Theta. PCA analysis showed AROMA and Lavender fragrances had higher relaxation potential compared to the other fragrances. Weighted PCA showed the difference in the degree of relaxation for the administered fragrances.
Conclusion : We concluded that Aromatherapy fragrance (a synergistic blend of relaxing essential oils) resulted in higher relaxed mental states. This was achieved by employing USL techniques as comparison and validation metrics for the previous study. Also, USL techniques were used to propose a methodology to understand and characterise EEG sensory data variability (subject-to-subject variability). The Relaxation Potential Metric successfully compared the degree of relaxation induced by olfactory stimuli. The significance of the proposed methodology is: 1) It can be used as tool to analyse brain wave data from sensory stimulus/stimuli for better comparison and characterisation and 2) It can be employed to engineer products which are more consumer-centric in nature.Note de contenu : - EEG and its significance for mental state
- Previous study and inspiration for present work
- Unsupervised learning methods : Clustering algorithms - K-means - Principal component analysis (PCA)
- MATERIALS AND METHODS : 1) Data pre-processing - 2) Validation of clustering method (single wave - Alpha)
- Table 1 : Table showing mental states characterized by brain wave signals and respective frequency
- Table 2 : Table showing the coefficients of variable for each of the PCs (pcincipal components)
- Table 3 : Table showing principal component score data for comparison of different experimental stimuli conditions
- Table 4 : Table showing principal components' characteristics in terms of brain wave intensity (high and /or low)
En ligne : https://drive.google.com/file/d/1ZLUqRKZge1iUHts1sHm1c0Fc1L7QyGFR/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=36333
in SOFW JOURNAL > Vol. 147, N° 9 (09/2021) . - p. 42-51[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22966 - Périodique Bibliothèque principale Documentaires Disponible