Accueil
Détail de l'auteur
Auteur Junkai Wu |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Dyeing recipe prediction of cotton fabric based on hyperspectral colour measurement and an improved recurrent neural network / Jianxin Zhang in COLORATION TECHNOLOGY, Vol. 137, N° 2 (04/2021)
[article]
Titre : Dyeing recipe prediction of cotton fabric based on hyperspectral colour measurement and an improved recurrent neural network Type de document : texte imprimé Auteurs : Jianxin Zhang, Auteur ; Xinen Zhang, Auteur ; Junkai Wu, Auteur ; Chunhua Xiao, Auteur Année de publication : 2021 Article en page(s) : p. 166-180 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Colorimétrie
CotonLe coton est une fibre végétale qui entoure les graines des cotonniers "véritables"(Gossypium sp.), un arbuste de la famille des Malvacées. Cette fibre est généralement transformée en fil qui est tissé pour fabriquer des tissus. Le coton est la plus importante des fibres naturelles produites dans le monde. Depuis le XIXe siècle, il constitue, grâce aux progrès de l'industrialisation et de l'agronomie, la première fibre textile du monde (près de la moitié de la consommation mondiale de fibres textiles).
Prévision, Théorie de la
Réseaux neuronaux (informatique)
Teinture -- Fibres textilesIndex. décimale : 667.3 Teinture et impression des tissus Résumé : Precise dyeing recipe prediction is important in the final colour reproduction of textile dyeing and printing products. Currently, the widely used dyeing recipe prediction methods based on colour tri-stimulus cannot effectively avoid the metamerism phenomenon. An intelligent dyeing recipe prediction model for cotton fabric dyeing is proposed in this paper based on hyperspectral colour measurement and a deep learning algorithm. The hyperspectral colour measurement can obtain three-dimensional spectral information (X, Y and λ) of fabric samples, and can acquire accurate colour values even with uneven samples if the regional correlation algorithm is used. A deep learning algorithm based on an improved recurrent neural network was then employed to establish the model between spectral reflectance and the dyeing recipe. In total, 343 evenly dyed and 20 unevenly dyed fabric samples were dyed using the dyestuffs of Reactive Red CI 238, Reactive Blue CI 204 and Reactive Yellow CI 206, upon which the recipe prediction model was based, established and evaluated. The experimental results show that the proposed model based on hyperspectral colour measurement and our algorithm can provide higher prediction accuracy for Reactive Red CI 238, Reactive Blue CI 204 and Reactive Yellow CI 206. The relative prediction errors are 3.40%, 2.70% and 3.10%, respectively, for these three types of dyeing recipe, while the relative prediction errors are 19.60%, 22.60% and 11.83%, respectively, using the Datacolor 650 recipe prediction model. Note de contenu : - EXPERIMENTAL : Preparation of colour fabric samples - Colour measurement based on the HIS - Reflectance extraction from the HIS image - Experimental dyeing recipe prediction model
- RESULTS AND DISCUSSION : Feasibility analysis of the HIS for colour measurement - Results analysis for the RC algorithm - Result analysis of the dyeing recipe prediction modelsDOI : https://doi.org/10.1111/cote.12516 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12516 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=36076
in COLORATION TECHNOLOGY > Vol. 137, N° 2 (04/2021) . - p. 166-180[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22844 - Périodique Bibliothèque principale Documentaires Disponible