Accueil
Détail de l'auteur
Auteur Kaibin He |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Fabrication of graphene-coated poly(glycidyl methacrylate) microspheres by electrostatic interaction and their application in epoxy anticorrosion coatings / Meng Li in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 18, N° 2 (03/2021)
[article]
Titre : Fabrication of graphene-coated poly(glycidyl methacrylate) microspheres by electrostatic interaction and their application in epoxy anticorrosion coatings Type de document : texte imprimé Auteurs : Meng Li, Auteur ; Yiyi Li, Auteur ; Jiatian Zhang, Auteur ; Dandan Zhang, Auteur ; Jie Li, Auteur ; Kaibin He, Auteur ; Yiting Xu, Auteur ; Birong Zeng, Auteur ; Lizong Dai, Auteur Année de publication : 2021 Article en page(s) : p. 383–396 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Anticorrosifs
Anticorrosion
Caractérisation
Composites
Epoxydes
GraphèneLe graphène est un cristal bidimensionnel (monoplan) de carbone dont l'empilement constitue le graphite. Il a été isolé en 2004 par Andre Geim, du département de physique de l'université de Manchester, qui a reçu pour cette découverte le prix Nobel de physique en 2010 avec Konstantin Novoselov. Il peut être produit de deux manières : par extraction mécanique du graphite (graphène exfolié) dont la technique a été mise au point en 2004, ou par chauffage d'un cristal de carbure de silicium, qui permet la libération des atomes de silicium (graphène epitaxié). Record en conduction thermique jusqu'à 5300 W.m-1.K-1. C'est aussi un matériaux conducteur.
Polyméthacrylate de glycidyle
Revêtements organiques
Revêtements protecteursIndex. décimale : 667.9 Revêtements et enduits Résumé : The uneven dispersion of graphene in the resin matrix hinders its application in anticorrosion coatings. This study reports a new method where graphene oxide (GO) is coated on the surface of the poly(glycidyl methacrylate) (PGMA) microspheres to promote the dispersion of GO in epoxy resin (EP) to improve the anticorrosion performance of EP. GO-coated PGMA microspheres (PGMA@GO) were successfully fabricated by electrostatic interaction, which was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and zeta potential analysis. The scanning electron microscopy results showed that the PGMA microspheres were uniformly coated with GO, when the weight ratio of PGMA@GO was 1:2 (PGMA: GO). Electrochemical impedance spectroscopy and salt immersion experiments were performed to evaluate the corrosion resistance of the EP composite coatings. Comparing with pure EP and GO/EP coatings, the mechanical properties and anticorrosion properties of coatings were improved after adding PGMA@GO. When the addition amount of PGMA@GO (of 50 g EP) was 1.0 wt% and about 0.67 wt% GO was only needed, the PGMA@GO/EP composite coating possessed a high impedance of 5.68 × 108 Ω cm2 and a low breakpoint frequency of 0.39 Hz for 21-day immersion in 3.5 wt% NaCl solution. The anticorrosion mechanism of PGMA@GO/EP composite coating was also discussed. Note de contenu : - EXPERIMENTAL : Materials - Characterizations - Functionalization of graphene oxide - Preparation of PGMA@GO/EP composite coating
- RESULTS AND DISCUSSION : Structural properties of PGMA@GO - The optimal weight ratio of PGMA@GO - Characterization of PGMA@GO/EP and GO/EP composite coating - Anticorrosion performance of PGMA@GO/EP and GO/EP composite coating - Anticorrosion mechanism of PGMA@GO/EP composite coating
- Table 1 : Main recipes of the anticorrosion composite coatings
- Table 2 : Zeta potentials of GO, PGMA, CTAB, PGMA–CTAB, and PGMA@GO (1:2) in deionized water
- Table 3 : Low frequency impedance (|Z|0.01Hz) of EP, 1.0% PGMA/EP, 0.5% GO/EP, 1.0% GO/EP, 1.5% GO/EP, 2.0% GO/EP, 0.5% PGMA@GO/EP, 1.0% PGMA@GO/EP, 1.5% PGMA@GO/EP, and 2.0% PGMA@GO/EP composite coatings during different immersion times in 3.5 wt% NaCl solution
- Table 4 : Breakpoint frequency (fb) of the composite coatings with different additivesDOI : https://doi.org/10.1007/s11998-020-00409-1 En ligne : https://link.springer.com/content/pdf/10.1007/s11998-020-00409-1.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=35602
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 18, N° 2 (03/2021) . - p. 383–396[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22701 - Périodique Bibliothèque principale Documentaires Disponible