Accueil
Détail de l'auteur
Auteur Michael Frauenhofer |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Optimized heat dissipation of energy storage systems / Michael Frauenhofer in ADHESION - ADHESIVES + SEALANTS, Vol. 17, N° 3/2020 (2020)
[article]
Titre : Optimized heat dissipation of energy storage systems Type de document : texte imprimé Auteurs : Michael Frauenhofer, Auteur ; Marc Gormanns, Auteur ; Martin Simon, Auteur ; Martin Rütters, Auteur ; Holger Fricke, Auteur Année de publication : 2020 Article en page(s) : p. 12-17 Note générale : Bibliogr. Langues : Multilingue (mul) Catégories : Batteries électriques
Dissipation d'énergie
Energie thermique
Thermocinétique
Véhicules électriquesIndex. décimale : 668.3 Adhésifs et produits semblables Résumé : The quality of the heat dissipation from batteries towards the outer casinghas a strong impact on the performance and life on an electric vehicle. The heat conduction path between battery module and cooling system is realized in series production electric vehicles by measn of paste-like materials. These so-called gap fillers exhibit high thermal conductivity and specific mechanical properties. The aim of an ongoing BMWi research project is to develop a new generation of gap fillers with improved thermal conductivity and reduced density and to qualify them for use in series production. Note de contenu : - Significance of the gap filler
- The OWES research project
- Challenge in the formulation of gap fillers
- Further development of ceramic fillers
- Aluminum based fillers
- Carbon based fillers
- Carbon-AlOx hybrid based filler
- Manufacturing properties
- Simulation of squeezing flows
- The squeeze flow experiment
- Fluid structure interaction simulations
- Simulation of the battery assembly process
- Industrial use of the simulations
- Fig. 1 : Before inserting the cell modules into the compartment floor, a heat-conducting gap filler is inserted
- Fig. 2 : Cooperation in the OWES project
- Fig. 3 : Influence of the degree of filling on density, thermal conductivity and viscosity on conventional materials (dashed) and improvement materials targeted in the project
- Fig. 4 : Comparison of the thermal conductivities when replacing aluminium oxide by adding graphite and corresponding densities of the mixtures
- Fig. 5 : The squeeze flow experiment is used to predict the force and the pressure when squeezing gap fillers
- Fig. 6 : Simulation of a squeeze flow experiment on the bases of rheological data determined by a fluid structure simulation (FSI)
- Fig. 7 : Experiment on the deflection of a metal sheet by the flow of a pink gap filler and comparison with the simulation
- Fig. 8 : Comparison of experiment and simulation at component
- Fig. 9 : Importance of the simulation of a complete component for industrial productionEn ligne : https://drive.google.com/file/d/1O6T29vV8_DaIcWyY49xdX5nEZYgs_x86/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34643
in ADHESION - ADHESIVES + SEALANTS > Vol. 17, N° 3/2020 (2020) . - p. 12-17[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22256 - Périodique Bibliothèque principale Documentaires Disponible