Accueil
Détail de l'auteur
Auteur Jacob D. Shevrin |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Crosslinking waterborne coatings with bipodal silanes for improved corrosion protection performance / Jacob D. Shevrin in COATINGS TECH, Vol. 16, N° 4 (04/2019)
[article]
Titre : Crosslinking waterborne coatings with bipodal silanes for improved corrosion protection performance Type de document : texte imprimé Auteurs : Jacob D. Shevrin, Auteur ; Sheba D. Bergman, Auteur Année de publication : 2019 Article en page(s) : p. 38-47 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Aluminium L'aluminium est un élément chimique, de symbole Al et de numéro atomique 13. C’est un métal pauvre, malléable, de couleur argent, qui est remarquable pour sa résistance à l’oxydation13 et sa faible densité. C'est le métal le plus abondant de l'écorce terrestre et le troisième élément le plus abondant après l'oxygène et le silicium ; il représente en moyenne 8 % de la masse des matériaux de la surface solide de notre planète. L'aluminium est trop réactif pour exister à l'état natif dans le milieu naturel : on le trouve au contraire sous forme combinée dans plus de 270 minéraux différents, son minerai principal étant la bauxite, où il est présent sous forme d’oxyde hydraté dont on extrait l’alumine. Il peut aussi être extrait de la néphéline, de la leucite, de la sillimanite, de l'andalousite et de la muscovite.
L'aluminium métallique est très oxydable, mais est immédiatement passivé par une fine couche d'alumine Al2O3 imperméable de quelques micromètres d'épaisseur qui protège la masse métallique de la corrosion. On parle de protection cinétique, par opposition à une protection thermodynamique, car l’aluminium reste en tout état de cause très sensible à l'oxydation. Cette résistance à la corrosion et sa remarquable légèreté en ont fait un matériau très utilisé industriellement.
L'aluminium est un produit industriel important, sous forme pure ou alliée, notamment dans l'aéronautique, les transports et la construction. Sa nature réactive en fait également un catalyseur et un additif dans l'industrie chimique ; il est ainsi utilisé pour accroître la puissance explosive du nitrate d'ammonium.
Angle de contact
Anticorrosifs
Anticorrosion
Essais de brouillard salin
Métaux -- Revêtements protecteurs
Organosilanes
Résistance chimique
Réticulation (polymérisation)
Revêtements (produits chimiques)
Revêtements en phase aqueuseIndex. décimale : 667.9 Revêtements et enduits Résumé : As global environmental concerns continue to overshadow the use of well-established metal surface pretreatment processes such as chromate treatment and phosphatization, the need for environmentally friendly corrosion protection systems has never been greater. A promising solution to this worldwide regulatory issue is waterborne silane technology, which can offer a heavy metal-free, volatile organic compound (VOC)-free alternative to protecting metals from corrosion. The mechanism behind this corrosion protection can best be explained by the passivation of a metal surface with a waterborne silane film, which acts as a barrier to water, salts, and other corroding materials in the surrounding environment. It is important to note that the waterborne silane technology investigated in this work can be viewed as a type of conversion coating or pretreatment to the metal surface, rather than a conventional waterborne coating or primer. Certain waterborne silane technology requires high-temperature curing procedures for optimal results, which can be difficult to achieve in certain applications or industries. With the use of bipodal silanes, the additional crosslinking introduced into the system can alleviate the need for this high-temperature curing procedure. In this novel work, we demonstrate that the incorporation of a bipodal silane into waterborne silane systems improves the surface passivation of the metal surface, enhances the hydrophobicity of the system, and increases the crosslinking density of the system, leading to significant improvements in the corrosion resistance of waterborne silane technology. Note de contenu : - EXPERIMENTAL METHODS : Materials - Formulation preparation - Cleaning and application procedures - Testing procedures
- RESULTS AND DISCUSSION : Surface contact angle analysis - Alkaline resistance testing
- Fig. 1 : Surface passivation of a metal substrate with an organofunctional silane film after application and curing
- Fig. 2 : Structure of 1,2-bis(triethoxysilyl)ethane, the organofunctional bipodal silane investigated in this work
- Fig. 3 : DI water droplets on uncoated aluminum and WB1-coated aluminum
- Fig. 4 : Contact angle measurements of DI water on uncoated aluminum (44°± 1.5°) and WB1-coated aluminum (72°±1.6°)
- Fig. 5 : Contact angle measurements of DI water on WB2-coated aluminum (41°± 1.6°) and WB3-coated aluminum (50°± 2.0')
- Fig. 6 : Contact angle measurements of Dl water on WB4-coated aluminum (40°± 1.7°) and WB5-coated aluminum (56°± 1.4°)
- Fig. 7 : WB2-coated aluminum after 250 h in a neutral salt spray test. Coatings cured for 72 h at 23°C, 30 min at 80°C and 30 min at 180°C
- Fig. 8 : WB3-coated aluminum after 250 h in a neutral salt spray test. Coatings cured for 72 h at 23°C, 30 min at 80°C and 30 min at 180°C
- Fig. 9 : WB4-coated aluminum after 400 h in a neutral salt spray test. Coatings cured for 72 h at 23°C), 30 min at 80°C and 30 min at 180°C
- Fig. 10 : WB5-coated aluminum after 400 h in a neutral salt spray test. Coatings cured for 72 h at 23°C, 30 min at 80°C and 30 min at 180°C
- Fig. 11 : WB2-coated aluminum and WB3-coated aluminum after 6 min of immersion in a 10% NaOH solution
- Fig. 12 : WB2-coated aluminum before and after the alkaline resistance test
- Fig. 13 : WB3-coated aluminum before and after the alkaline resistance test
- Fig. 14 : WB2-coated aluminum and WB3-coated aluminum after an alkaline resistance test and 100 h in neutral sait spray testing
- Fig. 15 : Bode plot detailing the absolute impedance Z of several coated and uncoated aluminum substrates over a large range of frequenciesEn ligne : https://drive.google.com/file/d/1vGwBqE-ZGnNd0mYbn5M_Y05XGQVZFuCY/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32319
in COATINGS TECH > Vol. 16, N° 4 (04/2019) . - p. 38-47[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20867 - Périodique Bibliothèque principale Documentaires Disponible Crosslinking waterborne coatings with bipodal silanes for improved corrosion protection performance / Jacob D. Shevrin in POLYMERS PAINT COLOUR JOURNAL - PPCJ, Vol. 209, N° 4654 (09/2019)
[article]
Titre : Crosslinking waterborne coatings with bipodal silanes for improved corrosion protection performance Type de document : texte imprimé Auteurs : Jacob D. Shevrin, Auteur ; Sheba D. Bergman, Auteur Année de publication : 2019 Article en page(s) : p. 31-36 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Anticorrosifs
Anticorrosion
Essais accélérés (technologie)
Formulation (Génie chimique)
Métaux -- Revêtements protecteurs
Réticulation (polymérisation)
Revêtements en phase aqueuse -- Additifs
Silanes organofonctionnelsIndex. décimale : 667.9 Revêtements et enduits Résumé : The authors discusses waterborne silane technology and its impact on corrosion resistance properties in a coating.
As waterborne silane technology continues to gain interest as an environmentally friendly alternative to well-established corrosion protection technology, investigations into performance-enhancing additives are crucial for supporting this market growth.
If can be concluded that organofunctional bipodal silanes are viable performance-enhancing additives in waterborne corrosion protection systems due to the increase in hydrophobicity, crosslinking density and surface passivation that these materials can provide. ln particular, the waterborne organofunctional silanol system with colloidal silica and organofunctional bipodal silane additives exhibited the best corrosion resistance in neutral salt spray testing, the best alkaline resistance in alkaline testing, and the highest impedance during EIS testing. However, it is important to note that adding in an organofunctional bipodal silane into a room temperature cured waterborne organofunctional silanol coating did not outperform a thermally cured waterborne organofunctional silanol coating without organofunctional bipodal silane additives.
The authors discusses waterborne silane technology and its impact on corrosion resistance properties in a coating.
While contact angle measurements, salt spray testing, alkaline resistance testing and EIS data support this claim of increased corrosion resistance with the use of organofunctional bipodal silane additives, further research is necessary to understand the complete scope of waterborne silane technology and its interactions with organofunctional bipodal silanes.
Additional experimentation, including outdoor weatherability testing in real life conditions, is underway to better understand this technology in the hope of further improving the performance, affordability and reliability of waterborne silane coatings for corrosion resistance applications.Note de contenu : - EXPERIMENTAL METHODS : Materials - Formulation preparation - Cleaning and application procedures - Testing procedures
- RESULTS AND DISCUSSION : Surface contact angle analysis - Neutral salt spray testing - Alkaline resistance testing - Electrochemical impedance spectroscopy.
- Table : Ingredients for waterborne coatings WB1-WB5 (weight in grams)En ligne : https://drive.google.com/file/d/1T8G1vYU9OkeErtzSNwIsLN49qBs9CldH/view?usp=drive [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32919
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 209, N° 4654 (09/2019) . - p. 31-36[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21175 - Périodique Bibliothèque principale Documentaires Disponible Novel hydrolytically stable silane additives for improving the performance of waterborne acrylic roof coatings / Jacob D. Shevrin in COATINGS TECH, Vol. 18, N° 9 (09/2021)
[article]
Titre : Novel hydrolytically stable silane additives for improving the performance of waterborne acrylic roof coatings Type de document : texte imprimé Auteurs : Jacob D. Shevrin, Auteur Année de publication : 2021 Article en page(s) : p. 32-42 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Essais (technologie)
Formulation (Génie chimique)
Polyacryliques
Revêtements en phase aqueuse -- Additifs
Revêtements organiques
Silanes organofonctionnels
Stabilité hydrolytique
Toiture -- RevêtementsIndex. décimale : 667.9 Revêtements et enduits Résumé : As global environmental regulations continue to tighten restrictions on coatings containing volatile organic compounds (VOCs), the need for hydrolytically stable additives in waterborne coatings has never been greater.
Organofunctional alkoxysilanes are a class of widely used additives in the coatings industry. They act as a bridge between an organic coating and an inorganic substrate, providing adhesion promotion and other important performance improvements.
Given the high moisture sensitivity of organofunctional alkoxysilanes, most silane additives rapidly undergo condensation in waterborne coatings, leading to unworkable viscosities and gelling of the waterborne coatings within the first few weeks or months on the shelf. This has posed a significant barrier to using silane additives in waterborne coatings for all types of applications.
Two organofunctional silane additives that demonstrated positive hydrolytic stability over an extended period of time in waterborne acrylic roof coatings are investigated here.
Figure 1—From left to right : Epoxy-functional silane oligomer (VPS 4721) and amine-functional silane monomer (Dynasylan® 1505). Me = methyl, EtO = ethyl, R = epoxy-based moeity, X = epoxy-based moeity.These organofunctional silane additives include an epoxy-functional silane oligomer, VPS 4721, and an amine-functional silane monomer, Dynasylan® 1505.
The oligomeric structure of the epoxy-functional silane oligomer allows for slower hydrolysis and condensation rates in a waterborne system compared to a monomeric epoxy-functional silane (such as glycidoxypropyltrimethoxysilane).Note de contenu : - EXPERIMENTAL METHODS : Materials - Formulation preparation - Roofing membrane substrate preparation - Curing procedure - Testing procedures
- RESULTS AND DISCUSSION : Accelerated stability results - Water ponding resistance results - Dry and wet adhesion results on aged EPDM - Dry and wet adhesion results on aged asphalt - Elongation at break results - Tensile strength results - Dirt pickup resistance results - Surface hydrophobicity results - Accelerated weathering results
- Table 1 : Waterborne acrylic roof coating formulationEn ligne : https://drive.google.com/file/d/1IXOWtzMjf2ArkSL8TmK_VeLvLEcBQF9A/view?usp=share [...] Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=36423
in COATINGS TECH > Vol. 18, N° 9 (09/2021) . - p. 32-42[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 22992 - Périodique Bibliothèque principale Documentaires Disponible