> Biopolymères
Biopolymères
Voir aussi
-
Acide polylactique-co-glycolique
Le PLGA, le PLG ou le poly(acide lactique- co- glycolique) est un copolymère qui est utilisé dans une multitude de dispositifs thérapeutiques approuvés par la Food and Drug Administration (FDA), en raison de sa biodégradabilité et de sa biocompatibilité. Le PLGA est synthétisé par co-polymérisation par ouverture de cycle de deux monomères différents, les dimères cycliques (1,4-dioxane-2,5-diones) de l'acide glycolique et de l'acide lactique. Les polymères peuvent être synthétisés sous forme de copolymères aléatoires ou séquencés conférant ainsi des propriétés de polymère supplémentaires. Les catalyseurs couramment utilisés dans la préparation de ce polymère comprennent le 2-éthylhexanoate d'étain (II), les alcoolates d'étain (II) ou l'isopropoxyde d'aluminium. Au cours de la polymérisation, des unités monomères successives (d'acide glycolique ou lactique) sont liées entre elles dans du PLGA par des liaisons ester, donnant ainsi un polyester aliphatique linéaire comme produit.
Selon le rapport du lactide au glycolide utilisé pour la polymérisation, différentes formes de PLGA peuvent être obtenues : celles-ci sont généralement identifiées en fonction du rapport molaire des monomères utilisés (par exemple PLGA 75:25 identifie un copolymère dont la composition est à 75 % lactique acide et 25 % d'acide glycolique). La cristallinité des PLGA variera de complètement amorphe à entièrement cristalline en fonction de la structure du bloc et du rapport molaire. Les PLGA présentent généralement une température de transition vitreuse dans la plage de 40 à 60°C. Le PLGA peut être dissous par une large gamme de solvants, selon la composition. Les polymères à plus haute teneur en lactide peuvent être dissous à l'aide de solvants chlorés, tandis que les matières à teneur en glycolide plus élevée nécessiteront l'utilisation de solvants fluorés tels que HFIP.
Le PLGA se dégrade par hydrolyse de ses liaisons esters en présence d' eau. Il a été démontré que le temps nécessaire à la dégradation du PLGA est lié au rapport des monomères utilisés dans la production : plus la teneur en unités glycolides est élevée, plus le temps nécessaire à la dégradation est faible par rapport aux matériaux à prédominance lactide. Une exception à cette règle est le copolymère avec un rapport 50/50 monomères qui présente la dégradation la plus rapide (environ deux mois). De plus, les polymères dont l'extrémité est coiffée d'esters (par opposition à l' acide carboxylique libre) présentent des demi-vies de dégradation plus longues. Cette flexibilité dans la dégradation l'a rendu pratique pour la fabrication de nombreux dispositifs médicaux , tels que les greffes, les sutures, les implants, les dispositifs prothétiques, les films d'étanchéité chirurgicaux, les micro et nanoparticules.
Le PLGA subit une hydrolyse dans le corps pour produire les monomères d'origine : l'acide lactique et l'acide glycolique. Ces deux monomères, dans des conditions physiologiques normales, sont des sous-produits de diverses voies métaboliques dans le corps. L'acide lactique est métabolisé dans le cycle de l'acide tricarboxylique et éliminé via le dioxyde de carbone et l' eau. L'acide glycolique est métabolisé de la même manière et également excrété par les reins. Puisque le corps peut métaboliser les deux monomères, il y a une toxicité systémique minimale associée à l'utilisation de PLGA pour des applications de biomatériaux. Cependant, il a été signalé que la dégradation acide du PLGA réduit le pH local suffisamment bas pour créer un environnement autocatalytique. Il a été démontré que le pH à l'intérieur d'une microsphère peut devenir aussi acide que pH. (Wikipedia)
-
Alginate de calcium
L'alginate de calcium ou polymannuronate calcique, de formule (C6H7Ca1/2O6)n, est un additif alimentaire (E404) utilisé dans les boissons, constitué d'alginate et de calcium. Il s'agit d'une longue molécule synthétisée à partir de l'acide alginique, extrait d'algues brunes, constitué d'unités glucidiques formant une chaîne.
-
Alginates
L'acide alginique et ses dérivés (base conjuguée, sels et esters) les alginates sont des polysaccharides obtenus à partir d'une famille d'algues brunes : les laminaires ou les fucus.
- COMPOSITION CHIMIQUE : L'alginate est un polymère formé de deux monomères liés ensemble : le mannuronate ou acide mannuronique dont certains sont acétylés et le guluronate ou acide guluronique.
L'acide alginique permet la production de fibres d'alginates de sodium et de calcium. Les alginates alcalins forment dans l'eau des solutions colloïdales visqueuses. Si l'acide alginique est insoluble dans l'eau, l'alginate de sodium est lui très soluble dans l'eau, et l'alginate de calcium est seulement soluble en milieu basique, notamment en solutions de savon qui sont presque toujours assez alcalines.
Les alginates peuvent former des gels durs et thermostables utilisés comme additifs alimentaires.
- UTILISATIONS : Les alginates sont utilisés comme épaississants, gélifiants, émulsifiants et stabilisants de produits industriels les plus variés depuis les gelées alimentaires, les produits de beauté, jusqu'aux peintures et aux encres d'imprimerie. L'alginate de propane-1,2-diol (E405), ester de l'acide aliginique, est utilisé, par exemple, pour stabiliser des mousses (vinification, additif de bière, etc.), et est également utilisé dans un procédé de préparation de microcapsules.
-
Alginique, Acide
L'acide alginique et ses dérivés (base conjuguée, sels et esters) les alginates sont des polysaccharides obtenus à partir d'une famille d'algues brunes : les laminaires ou les fucus. - COMPOSITION CHIMIQUE : L'alginate est un polymère formé de deux monomères liés ensemble : le mannuronate ou acide mannuronique dont certains sont acétylés et le guluronate ou acide guluronique.
L'acide alginique permet la production de fibres d'alginates de sodium et de calcium. Les alginates alcalins forment dans l'eau des solutions colloïdales visqueuses. Si l'acide alginique est insoluble dans l'eau, l'alginate de sodium est lui très soluble dans l'eau, et l'alginate de calcium est seulement soluble en milieu basique, notamment en solutions de savon qui sont presque toujours assez alcalines.
Les alginates peuvent former des gels durs et thermostables utilisés comme additifs alimentaires - UTILISATIONS : Les alginates sont utilisés comme épaississants, gélifiants, émulsifiants et stabilisants de produits industriels les plus variés depuis les gelées alimentaires, les produits de beauté, jusqu'aux peintures et aux encres d'imprimerie. L'alginate de propane-1,2-diol (E405), ester de l'acide aliginique, est utilisé, par exemple, pour stabiliser des mousses (vinification, additif de bière, etc.), et est également utilisé dans un procédé de préparation de microcapsules.
-
Amylopectine
L'amylopectine est un polymère d'oses ramifié (polyoside) que l'on trouve dans les plantes. Il est constitué d'α-D-glucopyranose et est avec l'amylose le constituant de l'amidon. Les glucoses sont liés de manière linéaire par des liaisons alpha 1→4. Des ramifications apparaissent avec une liaison alpha 1→6 tous les 24 à 30 monosaccharides.
Son équivalent chez les animaux est le glycogène, qui a la même composition et structure, mais possède plus de ramifications (tous les 8 à 12 glucoses liés par les carbones 1→6).
Il domine toujours largement : 72 à 80 % dans le blé et la pomme de terre, 94 % dans le riz, le sorgho et le seigle. Le maïs cireux a un albumen composé à 100 % d'amylopectine.
-
Biomatériaux
-
Biomolécules
-
Bioplastiques
-
Biopolymères -- Applications industrielles
-
Biopolymères -- Détérioration
-
Biopolymères -- Effets de l'humidité
-
Biopolymères -- Propriétés mécaniques
-
Biopolymères -- Synthèse
-
Biopolymères enzymatiques
-
Chitooligosaccharide
-
Chitosane
Le chitosane ou chitosan est un polyoside composé de la distribution aléatoire de D-glucosamine liée en ß-(1-4) (unité désacétylée) et de N-acétyl-D-glucosamine (unité acétylée). Il est produit par désacétylation chimique (en milieu alcalin) ou enzymatique de la chitine, le composant de l'exosquelette des arthropodes (crustacés) ou de l'endosquelette des céphalopodes (calmars...) ou encore de la paroi des champignons. Cette matière première est déminéralisée par traitement à l'acide chlorhydrique, puis déprotéinée en présence de soude ou de potasse et enfin décolorée grâce à un agent oxydant. Le degré d'acétylation (DA) est le pourcentage d'unités acétylées par rapport au nombre d'unités totales, il peut être déterminé par spectroscopie infrarouge à transformée de Fourier (IR-TF) ou par un titrage par une base forte. La frontière entre chitosane et chitine correspond à un DA de 50 % : en deçà le composé est nommé chitosane, au-delà , chitine. Le chitosane est soluble en milieu acide contrairement à la chitine qui est insoluble. Il est important de faire la distinction entre le degré d'acétylation (DA) et le degré de déacétylation (DD). L'un étant l'inverse de l'autre c'est-à -dire que du chitosane ayant un DD de 85 %, possède 15 % de groupements acétyles et 85 % de groupements amines sur ses chaînes.
Le chitosane est biodégradable et biocompatible (notamment hémocompatible). Il est également bactériostatique et fongistatique.
Le chitosane est également utilisé pour le traitement des eaux usées par filtration ainsi que dans divers domaines comme la cosmétique, la diététique et la médecine.
-
Exopolysaccharides
-
Fibrille des collagène -- Propriétés thermotropes
La fibrille de collagène est une structure constituée d'un assemblage de fibres de tropocollagène (assemblage de 3 protéines de collagène alpha (alpha 1 - alpha 1 - alpha 2) en une hélice droite.
-
Galactane
Un galactane est un polyoside (polymère d'oses) composé exclusivement de monomères de galactose. Il peut être linéaire ou bien ramifié.
Sont des galactanes : L'agar-agar est un galactane contenu dans la paroi cellulaire de certaines espèces d'algues rouges.
-
Galactomannane
Le galactomannane est un polyoside (polymère d'ose) présent dans de nombreuses graines.
Le galactomannane est une fibre végétale soluble et acalorique présente dans les graines et sert de réserve de sucre lors de la germination. Elle est abondante dans l’albumen de graines de légumineuses, telle que la cyamopsis tetragonoloba1, de la Caesalpinia spinosa et de la Ceratonia siliqua.
Le galactomannane est un polymère linéaire composé d'une chaine de monomères de mannose ((1,4)-beta-D-mannopyranose) auxquelles sont ramifiés par un pont 1-6 une unité de galactose.
Les galactomannanes sont utilisés dans l'agro-alimentaire pour modifier la viscosité et la texture des aliments (boissons, crême glacée,...). Ils sont utilisés sous forme de gomme naturelle : gomme de guar (E412), gomme tara (E417) et gomme de caroube (E410).
-
Glucose-mannose
-
Lignine
La lignine est un des principaux composants du bois, avec la cellulose, l'hémicellulose et des matières extractibles. La lignine est présente principalement dans les plantes vasculaires et dans quelques algues. Ses principales fonctions sont d'apporter de la rigidité, une imperméabilité à l'eau et une grande résistance à la décomposition. Toutes les plantes vasculaires, ligneuses et herbacées, fabriquent de la lignine. Quantitativement, la teneur en lignine est de 3 à 5 % dans les feuilles, 5 à 20 % dans les tiges herbacées, 15 à 35 % dans les tiges ligneuses. Elle est moindre pour les plantes annuelles que pour les vivaces, elle est maximum chez les arbres. La lignine est principalement localisée entre les cellules (voir parois pectocellulosiques), mais on en trouve une quantité significative à l'intérieur même de celles-ci. Bien que la lignine soit un réseau tridimensionnel hydrophobe complexe, l'unité de base se résume essentiellement à une unité de phénylpropane. La lignine est le deuxième biopolymère renouvelable le plus abondant sur la Terre, après la cellulose, et, à elles deux, elles cumulent plus de 70 % de la biomasse totale. C'est pourquoi elle fait l'objet de recherches en vue de valorisations autres que ses utilisations actuelles en bois d'œuvre et en combustible.
Voie de biosynthèse : La lignine est une molécule dont le précurseur est la phénylalanine. Cet acide aminé va subir une cascade de réactions faisant intervenir une dizaine de familles d'enzymes différentes afin de former des monolignols. Ces enzymes sont : phénylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA o-methyltransferase (CCoAOMT), cinnamoyl-CoA reductase (CCR), ferrulate 5-hydroxylase (F5H), caffeic acid O-methyltransferase (COMT) et cinnamyl alcohol deshydrogenase (CAD). Dans un certain nombre de cas, des aldéhydes peuvent également être incorporés dans le polymère.
-
Poly-3-hydroxybutyrate
-
Poly-B-hydroxybutyrate
-
Polyamide 11
-
Polyamide 410
Le polyamide 410 (PA 410), dérivé 70% de l'huile de ricin est commercialisé sous le nom EcoPaXX par DSM. Le PA 410 est un polyamide de haute performance qui combine les avantages d'un point de fusion élevé (environ . 250 ° C), une faible absorption d'humidité et une excellente résistance aux diverses substances chimiques.
-
Polydioxanone
Chimiquement, le polydioxanone est un polymère de multiples motifs éther - ester répétés. Il est obtenu par polymérisation par ouverture de cycle du monomère p- dioxanone. Le processus nécessite de la chaleur et un catalyseur organométallique comme l'acétylacétone de zirconium ou le L-lactate de zinc. Il se caractérise par une température de transition vitreuse comprise entre -10 et 0 ° C et une cristallinité d'environ 55 %. Pour la production de sutures, le polydioxanone est généralement extrudé en fibres, cependant il faut prendre soin de traiter le polymère à la température la plus basse possible, afin d'éviter sa dépolymérisation spontanée en monomère. Le groupe oxygène éther dans le squelette de la chaîne polymère est responsable de sa flexibilité.
Le polydioxanone est utilisé pour des applications biomédicales , en particulier dans la préparation de sutures chirurgicales. D'autres applications biomédicales comprennent l'orthopédie, la chirurgie maxillo-faciale, la chirurgie plastique, l'administration de médicaments, les applications cardiovasculaires et l'ingénierie tissulaire.
Il est dégradé par hydrolyse et les produits finaux sont principalement excrétés dans l'urine, le reste étant éliminé par voie digestive ou exhalé sous forme de CO2 . Le biomatériau est complètement réabsorbé en 6 mois et ne peut être vu qu'un tissu de réaction de corps étranger minimal à proximité de l'implant. Les matériaux en PDS peuvent être stérilisés avec de l'oxyde d'éthylène. (Wikipedia)
-
Polyéthylène furanoate
Le polyéthylène 2,5-furandicarboxylate , également appelé poly (éthylène 2,5-furandicarboxylate), polyéthylène furanoate et poly (éthylène furanoate) et généralement abrégé en PEF , est un polymère pouvant être produit par polycondensation de l' acide 2,5-furandicarboxylique ( FEP), FDCA) et d' éthylène glycol . En tant que polyester aromatique à partir d'éthylène glycol, il s'agit d'un analogue chimique du polyéthylène téréphtalate (PET) et du polyéthylène naphtalate (PEN).
-
Polyglucanes
-
Polyhydroxyalcanoates
Les polyhydroxyalcanoates ou PHAs sont des polyesters biodégradables produits naturellement par fermentation bactérienne de sucres ou lipides. Ils sont produits par les bactéries en tant que stockage de carbone et d'énergie. Le terme polyhydroxyalcanoate regroupe plus de 150 monomères différents qui conduisent à des propriétés parfois très différentes. Ces polymères peuvent ainsi présenter des propriétés thermoplastiques ou d'élastomères avec des points de fusion allant de 40 à 180°C.
-
Polylactide-co-glycolique
Le PLGA, le PLG ou l'acide poly(lactique- co -glycolique) (​​CAS : 26780-50-7) est un copolymère utilisé dans une multitude de dispositifs thérapeutiques approuvés par la Food and Drug Administration (FDA), en raison de sa biodégradabilité et de sa biocompatibilité.
Le PLGA est synthétisé par copolymérisation par ouverture de cycle de deux monomères différents , les dimères cycliques (1,4-dioxane-2,5-diones) de l'acide glycolique et de l'acide lactique . Les polymères peuvent être synthétisés sous forme de copolymères statistiques ou séquencés, conférant ainsi des propriétés polymères supplémentaires. Les catalyseurs courants utilisés dans la préparation de ce polymère comprennent le 2-éthylhexanoate d'étain (II) , les alcoolates d'étain (II) ou l'isopropoxyde d'aluminium . Pendant la polymérisation, des unités monomères successives (d'acide glycolique ou lactique) sont liées entre elles dans le PLGA par des liaisons ester, donnant ainsi un polyester aliphatique linéaire comme produit. (Wikipedia)
-
Polylactique, Acide
L'acide polylactique (anglais : polylactic acid, abrégé en PLA) est un polymère entièrement biodégradable utilisé dans l'alimentation pour l'emballage des œufs et plus récemment pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces. Il est utilisé également en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable.
Le PLA peut-être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique.
Ce procédé conduit à des polymères avec des masses molaires relativement basses. Afin de produire un acide polylactique avec des masses molaires plus élevées, l'acide polylactique produit par condensation de l'acide lactique est dépolymérisé, produisant du lactide, qui est à son tour polymérisé par ouverture de cycle.
Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupement acide et d’une molécule d’acide lactique sur le groupement hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l'acide glycolique, soit seul, soit combiné à l’acide lactique.
-
Polylactones
-
Polymères
-
Polyphénols
Les polyphénols constituent une famille de molécules organiques largement présente dans le règne végétal. Ils sont caractérisés, comme l’indique le nom, par la présence d'au moins deux groupes phénoliques associés en structures plus ou moins complexes, généralement de haut poids moléculaire. Ces composés sont les produits du métabolisme secondaire des plantes.
Les polyphénols prennent une importance croissante, notamment grâce à leurs effets bénéfiques sur la santé. En effet, leur rôle d’antioxydants naturels suscite de plus en plus d'intérêt pour la prévention et le traitement du cancer, des maladies inflammatoires, cardiovasculaires et neurodégénératives. Ils sont également utilisés comme additifs pour les industries agroalimentaire, pharmaceutique et cosmétique
"Ils ont tous en commun la présence d'un ou plusieurs cycles benzéniques portant une ou plusieurs fonctions hydroxyles". La désignation "polyphénols" est consacrée par l'usage et, alors qu'elle ne devrait concerner que les molécules portant plusieurs fonctions hydroxyle phénolique, elle est habituellement utilisée pour l'ensemble de ces composés.
Les polyphénols naturels regroupent donc un vaste ensemble de substances chimiques comprenant au moins un noyau aromatique, portant un ou plusieurs groupes hydroxyle, en plus d’autres constituants. Il y a quatre principales familles de composés phénoliques : les acides phénoliques (catéchol, acide gallique, acide protocatéchique), les flavones, l'acide chlorogénique et les quinones. Ils peuvent aller de molécules simples, comme les acides phénoliques, à des composés hautement polymérisés, de plus de trente mille daltons, comme les tanins (acide tannique).
Les polyphénols sont communément subdivisés en phénols simples, acides phénoliques et coumarines, en naphtoquinones, en stilbénoïdes (deux cycles en C6 liés par deux atomes de carbone), en flavonoïdes, isoflavonoïdes et anthocyanes, et en formes polymérisées : lignanes, lignines, tanins condensés. Ces squelettes carbonés de base sont issus du métabolisme secondaire des plantes, élaborés par la voie du shikimate.
Les polyphénols sont présents dans diverses substances naturelles : sous forme d'anthocyanine dans les fruits rouges, le vin rouge (en relation avec les tanins, phénomène du "paradoxe français"), sous forme de proanthocyanidines dans le chocolat et le vin, d'acides caféoylquinique et féruloylquinique dans le café, de flavonoïdes dans les agrumes, et sous forme de catéchines comme le gallate d'épigallocatéchine dans le thé vert, de quercétine dans les pommes, les oignons, le vin rouge, etc.
D'après une étude réalisée avec des volontaires via Internet, les sources alimentaires de polyphénols sont principalement le café (36,9 %), le thé — vert ou noir — (33,6 %), le chocolat pour son cacao (10,4 %), le vin rouge (7,2 %) et les fruits (6,7 %)18. Parmi les fruits, les polyphénols, très présents dans toutes les pommes, sont encore plus concentrés dans les pommes à cidre (riches en tanin), qui peuvent en contenir jusqu'à quatre fois plus : c'est une biodiversité qui se manifeste en richesse aussi bien qualitativement que quantitativement en polyphénols. (Wikipedia)
-
Polysaccharides
Les polysaccharides (parfois appelés glycanes, polyosides, polyholosides ou glucides complexes) sont des polymères constitués de plusieurs oses liés entre eux par des liaisons osidiques.
Les polyosides les plus répandus du règne végétal sont la cellulose et l’amidon, tous deux polymères du glucose.
De nombreux exopolysaccharides (métabolites excrétés par des microbes, champignons, vers (mucus) du ver de terre) jouent un rôle majeur - à échelle moléculaire - dans la formation, qualité et conservation des sols, de l'humus, des agrégats formant les sols et de divers composés "argile-exopolysaccharide" et composites "organo-minéraux"(ex : xanthane, dextrane, le rhamsane, succinoglycanes...).
De nombreux polyosides sont utilisés comme des additifs alimentaires sous forme de fibre (inuline) ou de gomme naturelle.
Ce sont des polymères formés d'un certain nombre d'oses (ou monosaccharides) ayant pour formule générale : -[Cx(H2O)y)]n- (où y est généralement x - 1). On distingue deux catégories de polysaccharides : Les homopolysaccharides (ou homoglycanes) constitués du même monosaccharide : fructanes, glucanes, galactanes, mannanes ; les hétéropolysaccharides (ou hétéroglycanes) formés de différents monosaccharides : hémicelluloses.
Les constituants participant à la construction des polysaccharides peuvent être très divers : hexoses, pentoses, anhydrohexoses, éthers d'oses et esters sulfuriques.
Selon l'architecture de leur chaîne, les polysaccharides peuvent être : linéaires : cellulose ; ramifiés : gomme arabique, amylopectine, dextrane, hémicellulose et mixtes : amidon.
-
Pullulane
Le pullulane (ou pullulan) est un polysaccharide (polymère d'ose) constitué d'unités de maltotriose (un triholoside de glucose), aussi connu comme l'α-1,4- ;α-1,6-glucane. Les trois unités de glucose qui composent le maltotriose sont reliés par une liaison osidique du type α-1,4, tandis que les maltotrioses sont connectés entre eux par des liaisons osidiques du type α-1,6.
Le pullulane est produit à partir de l'amidon par le champignon Aureobasidium pullulans.
En Europe l'usage de pullulane est accepté dans les enveloppes des compléments alimentaires (numéro E1204) présentés sous forme de gélules et de comprimés, ainsi que dans les films comestibles des micro-confiseries destinés à rafraîchir l'haleine.
-
Ressources renouvelables
-
Scléroglucane
Le scléroglucane est un polymère du glucose. Sa structure est régulière, avec une unité répétitive constituée de 4 résidus D-glucose dont 3 sont liés en β (1 -> 3) et 1 en β (1 -> 6). Les monomères sont reliés par des liaisons β (1 -> 3).
Les applications principales du stéréoglucane sont dans le secteur pétrolier. Sa haute viscosité à faible concentration, sa bonne compatibilité avec les électrolytes, sa stabilité,à haute température, aux forts cisaillements (Davidson et al., 1980 ; Coviello et al., 1995) et sa bonne filtrabilité, le rendent particuièrement bien adapté aux utilisations en récupération assistée du pétrol (Holzwarth, 1987 ; Donche, 1985) et en prévention des venues d'eau et de gaz. Il est également très utile en boues de forage et en fluide de fracturation. On l'utilise également dans le domaine phytosanitaire pour ses propriétés suspensoïdes. Il permet de stabiliser les suspensions et émulsions et favorise la rétention des produits sur les feuilles. Ses applications concernent aussi le secteur pharmaceutique et cosmétique. Les solutions de scléroglucane sont très visqueuses avec un écoulement de type pseudoplastique à seuil d'écoulement élevé.
-
Tanins condensés
Les tanins condensés sont des polymères de flavanols. Ils sont constitués d'unités de flavan-3-ols liées entre elles par des liaisons carbone-carbone de type 4->8 ou 4->6 (voir la structure ci-dessous).
Ces tanins sont très abondants dans certains végétaux consommés par l'homme comme les prunes, fraises et pommes ou des boissons comme le vin. Ce sont eux qui confèrent une astringence à ces produits alimentaires.
D'autre part, leur aptitude à piéger les radicaux libres pourrait réduire les risques de maladies cardiovasculaires et de cancer et ils accéléreraient de 50 % la vitesse de cicatrisation des plaies superficielles.
-
Xylane
Le xylane est un composant principal des hémicelluloses, et le deuxième polyoside naturel le plus abondant après le xyloglucane. Les xylanes sont des polymères de xyloses.
Plusieurs enzymes sont nécessaires pour la dégradation de xylane, mais la principale enzyme impliquée est la xylanase. Les xylanases sont des enzymes glycosyles hydrolases qui catalysent l'hydrolyse de β-1,4-glucosidiques en xylane via un double mécanisme de déplacement.
L'hydrolyse des xylanes donne du xylose. Le xylose est réduit pour donner un polyol non naturel: le xylitol.
Ces dernières années, les applications de la biotechnologie des xylanases/xylane se sont élargies sensiblement : ces composants sont aujourd'hui employées comme suppléments dans la fabrication du papier, l'alimentation animale, le biobleaching des pâtes et papiers et dans la production de bioéthanol.
Le numéro CAS du 1,3-Xylane est 9014-63-5 et son numéro EINECS 232-760-63. Sa formule chimique est (C5H8O5)n.
|