Titre : |
Reconnection of cysteine in reduced hair with alkylene dimaleates via thiol-Michael click chemistry |
Type de document : |
texte imprimé |
Auteurs : |
Yuwen Wu, Auteur ; Ling Ma, Auteur ; Timson Chen, Auteur ; Kuan Chang, Auteur ; Jing Wang, Auteur |
Année de publication : |
2024 |
Article en page(s) : |
p. 457-467 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Cheveux -- Propriétés mécaniques Cheveux -- Soins et hygiène Chimie click Cosmétiques Dimaléate d'alkylène Fibres kératiniques Liaisons disulfures Thiols
|
Index. décimale : |
668.5 Parfums et cosmétiques |
Résumé : |
- OBJECTIVES : Conventional hair permanent waving (PW) and permanent straightening processes typically involve two steps: reduction, for breaking -S-S- bond in cystine into cysteine and oxidation for -S-S- bond reconnection. However, it is known that the hair incurs damage during the oxidation step. In this work, we proposed a novel strategy to reconnect reduced disulfide bonds in hair via the thiol-Michael click reaction, by using a symmetric Michael reagent.
- METHODS : Virgin black Chinese hair was reduced using 8% wt thioglycolic acid and employed as model hair containing a high content of broken disulfide bonds. The reduced hair was treated with 1,4-n-butylene dimaleate. Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to verify the chemical changes occurred in untreated and treated hair fibre. Single-fibre mechanical properties and thermal properties of the hair were evaluated using tensile testing and differential scanning calorimetry (DSC), respectively.
- RESULTS : The 1,4-n-butylene dimaleate could reconnect free thiol groups generated by disulfide bond reduction via thiol-Michael click reaction and significantly improve the mechanical strength of hair compared to that of the reduced hair. Secondary conformational resolution analysis of FT-IR results revealed that the content of α-helix structure could be restored after treatment with 1,4-n-butylene dimaleate. The intermolecular forces established by the newly generated C-S bonds compensate the broken disulfide bonds and enhance the fracture strength of the hair compared to that of reduced hair. Michael reagents of similar structure also showed similar performance in restoring the mechanical properties of reduced hair.
- CONCLUSIONS : Our data suggest that 1,4-n-butylene dimaleate can restore the mechanical properties of reduced hair by reconnecting reduced disulfide bonds and restoring the secondary conformation of hair keratin. |
Note de contenu : |
- MATERIALS AND METHODS : Reagents - Synthesis of 1,4-n-butylene dimaleate - Hair samples - Hair tensile property tests - Fluorescence microscopy characterization of free thiol groups - Characterization of hair
- RESULTS AND DISCUSSION : Click reaction of free thiol groups in hair - Restoration of mechanical properties of reduced hair - Effect of different treatments on the thermal properties of hair - Evidence of the ability of 1,4-n-butylene dimaleate to restore the disrupted secondary conformation of reduced hair keratin - Restorative performance of alkylene dimaletates with different carbon chain lengths to that of 1,4-n-butylene dimaleate |
DOI : |
https://doi.org/10.1111/ics.12944 |
En ligne : |
https://drive.google.com/file/d/1zZm-Vh22Gbs3x-QX1AuXSjUWukCVcve6/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=41346 |
in INTERNATIONAL JOURNAL OF COSMETIC SCIENCE > Vol. 46, N° 3 (06/2024) . - p. 457-467