Accueil
Détail de l'auteur
Auteur Tony Mancina |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Implementing DOE to study the effect of paint application parameters, film build, and dehydration temperature on solvent pop / Lindita Prendi in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 5, N° 1 (03/2008)
[article]
inJOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 5, N° 1 (03/2008) . - p. 45-56
Titre : Implementing DOE to study the effect of paint application parameters, film build, and dehydration temperature on solvent pop Type de document : texte imprimé Auteurs : Lindita Prendi, Auteur ; Ahammad Ali, Auteur ; Paul Henshaw, Auteur ; Tony Mancina, Auteur ; Chris Tighe, Auteur Année de publication : 2008 Article en page(s) : p. 45-56 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Acide polyacrylique
Aminoplastes
Cloquage (défauts)
Couche de base
Déshydratation
Epoxydes
MélamineLa mélamine, de nom chimique 1,3,5-triazine-2,4,6-triamine, est parfois dénommée cyanuramide ou cyanurotriamine. Sa formule brute est C3H6N6.
Les "résines mélamine-formaldéhyde" ou "mélamine-formol" (sigle MF) sont appelées "mélamine" dans le langage courant. Elles font partie de la famille des aminoplastes qui regroupe des résines thermodurcissables aminées, issues d'un comonomère tel l'urée ou la mélamine, parfois le thiocarbamide, le cyanamide hydrogène ou le dicyandiamide ; le second comonomère étant le formaldéhyde.
Plan d'expérience
Polyacryliques
Revêtements en phase aqueuse
VernisIndex. décimale : 667.9 Revêtements et enduits Résumé : This research investigated popping when automotive clearcoat was applied over waterborne basecoats using design of experiments (DOE). The study was conducted using melamine crosslinked acrylic latex basecoat and acrylic acid/epoxy clearcoat. The focus of the project was directed toward the paint application and dehydration stages. The study was conducted in four phases. In Phase 1, three paint application parameters, flow rate (FR), atomizing air (AA), and distance of the applicator tip from the substrate (D), were investigated. In Phase 2, FR and target distance were investigated in relation to popping while keeping other parameters as well as film build constant. In Phase 3, the effect of film build on popping was investigated by selecting three levels of film build. Phase 4 was focused on the possible effect of dehydration oven temperature on popping. Results indicated that FR does not affect popping directly. However, it significantly affects the film build. Both film build and dehydration oven temperature were found significant in relation to popping occurrences. This work suggests that dehydration oven temperature and film build affect solvent popping. Although this study identified the significant factors causing waterborne basecoat popping, conditions for a pop-free paint surface were not established. DOI : 10.1007/s11998-007-9073-5 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-007-9073-5.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=3613 [article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 009979 - Périodique Bibliothèque principale Documentaires Disponible A model for the dehydration of waterborne basecoat / Paul Henshaw in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 3, N° 4 (10/2006)
[article]
inJOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 3, N° 4 (10/2006) . - p. 285-294
Titre : A model for the dehydration of waterborne basecoat Type de document : texte imprimé Auteurs : Paul Henshaw, Auteur ; Tony Mancina, Auteur ; Lindita Prendi, Auteur Année de publication : 2006 Article en page(s) : p. 285-294 Note générale : Bibliogr. Langues : Américain (ame) Tags : Vernis 'Revêtement protecteur' Distribution Concentration Déshydratation 'Copolymère uréthane' acrylate' Polyester Modélisation 'Peinture en phase aqueuse' 'Méthode des différences finies' Index. décimale : 667.9 Revêtements et enduits Résumé : In vehicle manufacturing, a common topcoat process sequence is the application of a waterborne basecoat, partial dehydration, application of a solventborne clearcoat, then curing at approximately 150°C. Anecdotal evidence suggests that under "harsh" (high temperature and velocity) dehydration conditions, a skin can be formed, which can trap excess water in the basecoat. Upon curing, the excess water forms vapor that can burst through the topcoat, leading to surface imperfections, termed pinholes or pops. A forward-time center-distance finite difference model, incorporating only diffusion and evaporation and experimentally determined coefficients, was used to simulate the water concentration in the layers of a paint film. Simulations were conducted at constant temperatures (27°C and 82°C) as well as by using temperature traces from a full-size dehydration oven under harsh (82°C) and gentle (54°C) conditions. The model accurately predicted the overall solids content after dehydration. However, in both temperature scenarios, the surface layer water concentration was less at the low temperature for the same overall solids content. This counter-intuitive finding is attributed to the increase in diffusivity with temperature, which allows water to be supplied to the surface faster in the high temperature run in each scenario. Therefore, this simple diffusion-evaporation model is not suitable for simulating water entrapment leading to popping. DOI : 10.1007/s11998-006-0024-3 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-006-0024-3.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=3681 [article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 005756 - Périodique Bibliothèque principale Documentaires Disponible