Accueil
Détail de l'auteur
Auteur Peter Randall Schunk |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Effect of blade-tip shape on the doctoring step in gravure printing processes / Kristianto Tjiptowidjojo in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 15, N° 5 (09/2018)
[article]
Titre : Effect of blade-tip shape on the doctoring step in gravure printing processes Type de document : texte imprimé Auteurs : Kristianto Tjiptowidjojo, Auteur ; Daniel S. Hariprasad, Auteur ; Peter Randall Schunk Année de publication : 2018 Article en page(s) : p. 983-992 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Elastohydrodynamique
Electronique imprimée
Héliogravure
Impression hélio
Interaction fluide-structure
Lubrification
RacleIndex. décimale : 667.9 Revêtements et enduits Résumé : A fundamental limit to the gravure printing process is in the doctoring step, in which a residual film defines the lower bound on allowable feature size. The resolution of finer features requires thin residual films, but these thin films increase the likelihood of wearing the doctor blades. A computational model was used to study the effect of blade-tip shape on residual film thickness while also minimizing the likelihood of wear. The blade-tip shape is altered by varying the bevel angles and the predicted film thickness is computed under various wiping speeds, configurations, and applied forces. In all cases studied, a slower wiping speed resulted in a thinner residual film, which is due to the doctoring step being governed by elastohydrodynamic lubrication. In some cases, a reversal of the wiping configuration created a thinner film, but it had no impact on the likelihood of wearing. Higher applied force leads to thinner residual film but the blade shape can have a more significant influence, indicating that lubrication forces dominate at this scale. Lastly, the likelihood of blade wear was predicted to vary within a small range for a fixed blade-tip shape over all conditions studied, which suggests that tip shape is the primary factor to consider when minimizing blade wear. DOI : 10.1007/s11998-017-0029-0 En ligne : https://link.springer.com/content/pdf/10.1007%2Fs11998-017-0029-0.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=31122
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 15, N° 5 (09/2018) . - p. 983-992[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 20232 - Périodique Bibliothèque principale Documentaires Disponible Process model for multilayer slide coating of polymer electrolyte membrane fuel cells / Kristianto Tjiptowidjojo in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, Vol. 19, N° 1 (01/2022)
[article]
Titre : Process model for multilayer slide coating of polymer electrolyte membrane fuel cells Type de document : texte imprimé Auteurs : Kristianto Tjiptowidjojo, Auteur ; Janghoon Park, Auteur ; Scott A. Mauger, Auteur ; Michael Ulsh, Auteur ; Peter Randall Schunk, Auteur Année de publication : 2022 Article en page(s) : p. 73-81 Note générale : Bibliogr. Langues : Américain (ame) Catégories : Eléments finis, Méthode des
Encre
Equations
Fluides, Mécanique des
Piles à combustible
Revêtements multicouches
Slide coatingIndex. décimale : 667.9 Revêtements et enduits Résumé : Slide coating is a precision method suitable for depositing multiple liquid-film layers simultaneously. Originally developed in the photographic film industry, it has been deployed for manufacturing of other products that benefit from multilayer coatings. One emerging application is the manufacture of polymer electrolyte membrane fuel cells (PEMFCs), which are used to produce electricity through electrochemical reactions of hydrogen and oxygen gas. The membrane-electrode assembly (MEA), in which key electrochemical reactions occur, consists of three layers that are typically deposited separately in serial fashion and then laminated together to form the three-layer MEA, i.e., three sequential steps of coat and dry. Adapting the process to simultaneous, multilayer slide coating of all three layers will save equipment cost and space while minimizing possible exposure to contaminants during transition between the steps. We are developing a three-layer slide coating model to aid the manufacturing process design of PEMFC. The model accounts for rheology of each layer, which typically exhibit shear thinning behavior. Model predictions are used to investigate simultaneous coatability of catalyst inks and to determine the best layer-by-layer ink selection. Note de contenu : - Governing equations and solution method
- Table 1 Geometry description of slide die used in this study. Refer to Fig. 1 for the nomenclature
- Table 2 Physical properties of inks used in the slide coating flow model. No surface tension and contact angles values needed for Nafion due to being in the middle layerDOI : https://doi.org/10.1007/s11998-021-00508-7 En ligne : https://link.springer.com/content/pdf/10.1007/s11998-021-00508-7.pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37146
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 19, N° 1 (01/2022) . - p. 73-81[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23313 - Périodique Bibliothèque principale Documentaires Disponible