[article]
Titre : |
Spider-capture-silk mimicking fibers with high-performance fog collection derived from superhydrophilicity and volume-swelling of gelatin knots |
Type de document : |
texte imprimé |
Auteurs : |
Yuanzhang Jiang, Auteur ; Harun Venkatesan, Auteur ; Shuo Shi, Auteur ; Cong Wang, Auteur ; Miao Cui, Auteur ; Qiang Zhang, Auteur ; Lin Tan, Auteur ; Jinlian Hu, Auteur |
Année de publication : |
2023 |
Article en page(s) : |
10 p. |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Gélatine La gélatine est une substance solide translucide, transparente ou légèrement jaune, presque sans goût et sans odeur, obtenue par l'ébullition prolongée de tissus conjonctifs (peaux) ou d'os d'animaux (principalement porc, bœuf, poisson). Elle possède de nombreuses applications dans le domaine culinaire, la médecine, les industries agroalimentaire et pharmaceutique.
En matière d’étiquetage, la gélatine est considérée par la norme européenne3 comme un ingrédient et non pas comme un additif, c'est pourquoi elle n'a pas de numéro E. Hors Union européenne, elle est considérée par certains pays comme un additif gélifiant et on peut la trouver avec la dénomination E441.
La gélatine est un mélange de protéines obtenu par hydrolyse partielle du collagène extrait de la peau comme la peau de porc (cochon), des os, des cartilages, etc. Les liaisons moléculaires entre les fibres de collagène sont alors brisées. Mélangée à de l'eau, la gélatine forme un gel colloïdal semi-solide thermo-réversible (il fond lorsqu'il est chauffé et recouvre son aspect gélatineux lorsqu'il est refroidi). Sous forme déshydratée, par contre, la gélatine n'a pas de point de fusion et devient friable ou brûle quand elle est chauffée à trop haute températureLa rhéologie de la gélatine se caractérise par un comportement viscoélastique, et des contraintes trop élevées ou appliquées trop rapidement peuvent entraîner une rupture fragile (fracturation) ou ductile6. Le caractère plutôt élastique/fragile ou plutôt visqueux/ductile dépend de la concentration en gélatine de la solution aqueuse et de la température, ainsi que de la durée de la mise sous contrainteLes acides aminés constituant la gélatine sont : la glycine (21 %), la proline (12 %), l'hydroxyproline (12 %), l'acide glutamique (10 %), l'alanine (9 %), l'arginine (8 %), l'acide aspartique (6 %), la lysine (4 %), la sérine (4 %), la leucine (3 %), la valine, la phénylalanine et la thréonine (2 %), l'isoleucine et l'hydroxylysine (1 %), la méthionine et l'histidine (< 1 %) et la tyrosine (< 0,5 %). Ces valeurs sont variables (surtout pour les constituants minoritaires) et dépendent de la source de matériaux bruts et de la technique de préparation. La gélatine est constituée à environ 98-99 % (en poids sec) de protéines et contient 18 acides aminés dont huit des neuf acides aminés essentiels à l'Homme. Elle n'a qu'une relative valeur nutritionnelle du fait de l'absence de tryptophane et de son déficit en isoleucine, thréonine et méthionine; elle possède également un taux inhabituellement élevé d'acides aminés non essentiels, la glycine et la proline (qui sont produits par le corps humain). (Wikipedia) Gonflement (physique) Hydrophilie Soie artificielle Soie d'araignéeLes fibres de soie sont formées de fibroïnes (protéines filamenteuses, appelées aussi spidroïnes2, composées de copolymères à blocs hydrophiles et hydrophobes) constituées à 25-30 % d'alanine et à 40% de glycine.
La soie d'araignée est un polymère dont la configuration moléculaire peut varier et rapidement s'adapter à la température et à l'humidité, ce qui fascine les chercheurs en biomimétique ou en robotique.
La soie d'araignée est notamment capable de « Supercontraction » (de 10 à 140 MPa de tension) quand elle s'humidifie (en plusieurs minutes quand l'hygrométrie dépasse 70 %), et plus rapidement quand elle est subitement mouillée. C'est ainsi que les toiles peuvent résister à la pluie, et au poids de la rosée voire accumuler plusieurs grammes d'eau sous forme de gouttes, à partir de la bruine par exemple. La thermostabilité varie aussi selon le degré de supercontraction
|
Index. décimale : |
677.39 Soie |
Résumé : |
Spider-capture-silk (SCS) can directionally capture and transport water from humid air relying on the unique geometrical structure. Although there have been adequate reports on the fabrication of artificial SCSs from petroleum-based materials, it remains a big challenge to innovate bio-based SCS mimicking fibers with high-performance fog collection ability and efficiency simultaneously. Herein, we report an eco-friendly and economical fiber system for water collection by coating gelatin on degummed silk. Compared to the previously reported fibers with the best fog collection ability (~ 13.10 μL), Gelatin on silk fiber 10 (GSF10) can collect larger water droplet (~ 16.70 μL in 330 s) with ~ 98% less mass. Meanwhile, the water collection efficiency of GSF10 demonstrates ~ 72% and ~ 48% enhancement to the existing best water collection polymer coated SCS fibers and spidroin eMaSp2 coated degummed silk respectively in terms of volume-to-TCL (vapor–liquid-solid three-phase contact line) index. The simultaneous function of superhydrophilicity, surface energy gradient, and ~ 65% water-induced volume swelling of the gelatin knots are the key factors in advancing the water collection performance. Abundant availability of feedstocks and ~ 75% improved space utilization guarantee the scalability and practical application of such bio-based fiber. |
Note de contenu : |
- MATERIALS AND METHODS : Materials - Preparation of degummed silk - Preparation of gelatin/HFIP solution - Fabrication of artificial SCS fibers - Fabrication of gelatin films and degummed silk fibrion films for water contact angle test - Characterization - Water collection observation and analysis - Water contact angle (CA) test - Swelling and shrinkage observation of gelatin spindle knot
- RESULTS AND DISCUSSION : Characterization of GSF - Fog collection property |
DOI : |
https://doi.org/10.1186/s42825-023-00112-y |
En ligne : |
https://link.springer.com/content/pdf/10.1186/s42825-023-00112-y.pdf |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=40060 |
in COLLAGEN AND LEATHER > Vol. 5 (2023) . - 10 p.
[article]
|