[article]
Titre : |
Mechanical, thermal, and surface properties of fusion-bonded epoxy nanocomposite coatings |
Type de document : |
texte imprimé |
Auteurs : |
Baha Demir, Auteur ; Ahmed F. Abdelaal, Auteur ; Mirza Murtuza, Auteur ; Ali Baig, Auteur ; Abdul Samad Mohammed, Auteur |
Année de publication : |
2023 |
Article en page(s) : |
p. 1489-1498 |
Note générale : |
Bibliogr. |
Langues : |
Américain (ame) |
Catégories : |
Alumine Angle de contact Charges (matériaux) Dioxyde de titane Epaisseur -- Mesure Epoxydes GraphèneLe graphène est un cristal bidimensionnel (monoplan) de carbone dont l'empilement constitue le graphite. Il a été isolé en 2004 par Andre Geim, du département de physique de l'université de Manchester, qui a reçu pour cette découverte le prix Nobel de physique en 2010 avec Konstantin Novoselov. Il peut être produit de deux manières : par extraction mécanique du graphite (graphène exfolié) dont la technique a été mise au point en 2004, ou par chauffage d'un cristal de carbure de silicium, qui permet la libération des atomes de silicium (graphène epitaxié). Record en conduction thermique jusqu'à 5300 W.m-1.K-1. C'est aussi un matériaux conducteur. Mesure Nanoparticules Nanotubes Oxyde de cérium Revêtement époxy lié par fusion Revêtements -- Propriétés mécaniques Revêtements -- Propriétés thermiques Revêtements organiques Thermocinétique Titane
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
Epoxy coatings have generally been used in applications that require the surfaces to be protected against corrosion. However, their use in demanding applications wherein the contacting surfaces are required to be protected against wear and tear has been limited due to their inferior mechanical and thermal properties. To overcome this challenge, epoxy composite coatings came into being, wherein the epoxy resin is reinforced with different fillers. However, due to the availability of a large variety of fillers, the selection of a suitable filler and the amount to be used in the epoxy resin for the best properties still remains a challenge. Hence, the focus of this research is to compare the performance of five different fillers, viz. carbon nanotubes (CNTs), graphene (GO), alumina (Al2O3), titanium dioxide (TiO2), and ceria (CeO2) in enhancing the mechanical, thermal, and surface properties of epoxy coatings. The five fillers selected covered the spectrum of carbon based, ceramic, and metallic oxide fillers. Different loadings (0.5, 1.5, and 3 wt%) of each of the fillers were used to fabricate fusion-bonded epoxy composite coatings on mild steel coupons using an electrostatic spray gun. The effect of these fillers was evaluated on the hardness, thermal conductivity, and water contact angle of the epoxy composite coatings. It was observed from the results that 0.5 wt% of Al2O3 was found to be the best-performing filler among all the fillers in terms of higher hardness and 3 wt% of Al2O3 was best in terms of thermal conductivity as compared to the pristine epoxy coatings and other epoxy composite coatings. |
Note de contenu : |
- EXPERIMENTAL PROCEDURES :
- Powder preparation
- Coating preparation
- Microhardness
- Surface properties
- Thermal conductivity
- Scanning electron microscopy (SEM)
- Coating thickness measurements
- RESULTS AND DISCUSSION :
- SEM evaluation of the morphology of the different epoxy nanocomposite coatings
- Effect of different loadings of different fillers on the hardness of the epoxy nanocomposite coatings
- Effect of different loadings of different fillers on the thermal conductivity of the epoxy nanocomposite coatings
- Effect of different loadings of different fillers on the surface roughness of the epoxy nanocomposite coatings
- Effect of different loadings of different fillers on the water contact angle of the epoxy nanocomposite coatings
- The best-performing filler in terms of hardness and thermal conductivity
- Table 1 Surface roughness measurements of CNT, GO, ceria, TiO2, and Al2O3 at weight percent from 0.5, 1.5 to 3% in μm
- Table 2 Water contact angle measurements of CNT, GO, ceria, TiO2, and Al2O3 at weight percents from 0.5, 1.5 to 3% in degrees |
DOI : |
https://doi.org/10.1007/s11998-022-00760-z |
En ligne : |
https://link.springer.com/content/pdf/10.1007/s11998-022-00760-z.pdf?pdf=button% [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=39731 |
in JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH > Vol. 20, N° 4 (07/2023) . - p. 1489-1498
[article]
|