Titre : |
A contribution to analytical solutions for buckling analysis of axially compressed rectangular stiffened panels |
Type de document : |
texte imprimé |
Auteurs : |
Victor Tochukwu Ibeabuchi, Auteur ; Mathias Owus Ibearugbulem, Auteur ; Kelechi Okechukwu Njoku, Auteur ; Ezekiel Onyinyechi Ihemegbulem, Auteur ; Princewill Obumneke Okorie, Auteur |
Année de publication : |
2021 |
Article en page(s) : |
p. 301-306 |
Note générale : |
Bibliogr. |
Langues : |
Français (fre) |
Tags : |
'Approche analytique' Flambage 'Méthode Ritz' 'Panneaux raidis' 'Fonction de déviation exacte' |
Index. décimale : |
620.11 Matériaux (propriétés, résistance) |
Résumé : |
Analytical solution to the buckling problems of stiffened panels subjected to in-plane compressive loads is presented. The total potential energy functional of stiffened panel is obtained by the summation of that of a line continuum and stiffened panel derived from elastic principles of mechanics. Minimizing the resulting equation with respect to deflection coefficient and rearranging gives the expression for obtaining the buckling load of stiffened panel. Exact deflection functions were substituted directly in the new solution and various edge conditions were considered in this analysis. Obtained results were compared with analytical results of previous works. The method is computationally efficient for complex edge conditions and gives high numerical accuracy. |
Note de contenu : |
- Panel definition and boundary condition
- Theoretical Formulations : Stiffened SSSS platesStiffened CSCS plates
- Table 1 : Stiffness coefficients for plates and stiffeners
- Table 2 : Comparison of buckling coefficient K with previous works for one stiffener
- Table 3 : Comparison of buckling coefficient K with previous works for two stiffeners |
DOI : |
https://doi.org/10.18280/rcma.310506 |
En ligne : |
https://www.iieta.org/download/file/fid/63495 |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37688 |
in REVUE DES COMPOSITES ET DES MATERIAUX AVANCES > Vol. 31, N° 5 (10/2021) . - p. 301-306