Titre : |
Adsorption studies on the treatment of textile dyeing effluent by activated carbon prepared from olive stone by ZnCl2 activation |
Type de document : |
texte imprimé |
Auteurs : |
Mehmet Ugurlu, Auteur ; Ahmet Gürses, Auteur ; Cetin Dogar, Auteur |
Année de publication : |
2007 |
Article en page(s) : |
p. 106-114 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Index. décimale : |
667.3 Teinture et impression des tissus |
Résumé : |
This study aimed to investigate the removal of a reactive dye from aqueous solution by adsorption. Activated carbon prepared from olive stone, an agricultural solid by-product, was used as adsorbent. Different amounts of activating agent (ZnCl2) and adsorbent particle size were studied to optimise adsorbent surface area. The adsorption experiments were conducted at different process parameters such as adsorbent dose, temperature, equilibrium time and pH. The experimental results showed that at equilibrium time 120 min, optimum pH ranged between 3 and 4, and adsorbent dosage was 2.0 g 200 ml-1. While the kinetic data support pseudo-second order, a pseudo-first order model shows very poor fit. Adsorption isotherms were obtained at three different temperatures (288, 298 and 308 K). The fitness of adsorption data to the Langmuir and Freundlich isotherms was investigated. In addition, the thermodynamic parameters such as isosteric enthalpy of adsorption (DeltaHads)y, isosteric entropy of adsorption (DeltaSads)y and free energy of adsorption DeltaG0ads were calculated. BET surface area measurements were made to reveal the adsorptive characteristics of the produced active carbon. The surface area of the activated carbon produced with 20 % w/w ZnCl2 solution was 790.25 m2 g-1. |
Note de contenu : |
- EXPERIMENTAL : Preparation and characterisation of activated carbon - Adsorption experiments
- RESULTS AND DISCUSSION : Effect of initial dye concentrations - Effect of adsorbent dosage - Effect of pH - Kinetics of dye adsorption - Adsorption isotherms - Desorption studies |
DOI : |
10.1111/j.1478-4408.2007.00072.x |
En ligne : |
http://onlinelibrary.wiley.com/doi/10.1111/j.1478-4408.2007.00072.x/pdf |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=3552 |
in COLORATION TECHNOLOGY > Vol. 123, N° 2 (2007) . - p. 106-114