[article]
Titre : |
Anticorrosive self healing coatings |
Type de document : |
texte imprimé |
Auteurs : |
Ajay Chaurasiya, Auteur |
Année de publication : |
2020 |
Article en page(s) : |
p. 56-82 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Anticorrosifs Anticorrosion Catalyseurs Emulsification Métathèse (chimie) Métaux -- Revêtements protecteurs Microcapsules Monomères Nanocapsules Passivité (Chimie) Polymérisation Revêtement autoréparant Revêtements organiques
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems. Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest. Notably, the worldwide cost of corrosion has been year estimated to be nearly $300 billion per year. Recent studies on self-healing polymers have demonstrated repair of bulk mechanical damage as welI as dramatic increases in the fatigue life. Non-metallic (based on polymers or oxides) and metallic protective coatings are used to protect metal products against the harmful action of the corrosion environment Various approaches for achieving healing functionality encapsulation have been demonstrated, including reversible chemistry, networks, microvascular nanoparticle phase separation, poly-ionomers, fibres hollow and separation. monomer phase. The majority of these systems, however, have serious chemical and mechanical limitations, preventing their use as coatings. Modem engineered coatings are highly optimized materials in which dramatic modifications of the coating chemistry are unlikely to be acceptable. Here, we describe a generalized approach to self-healing polymer-coating systems, and demonstrate its effectiveness for both model and industrial ly important coating systems. |
Note de contenu : |
- Definition of self-healing
- Design strategies
- Release of healing agents
- Microcapsule embedment
- Hollow fiber embedment
- Microvascular system
- Reversible cross-links
- Diels-Alder (DA) and retro-DA reaction
- Ionomers
- Supramolecular polymers : Miscellaneous technologies - electrohydrodynamics
- CONDUCTIVITY : Shape memory effect
- Nanoparticle migrations
- Co-deposition
- Self-healing corrosion protection coatings polymeric coatings
- Protection of mild steel
- Protection of aluminium alloy
- Protection of magnesium alloy
- Coatings containing micro-nanocapsules
- Hybrid-oxide coatings
- Other self-healing coatings
- Self-healing process
- experimental analysis for cross cut corrosion resistance test
- Others applications
- Fig. 1 : Schematic representation of self-healing concept using embedded microcapsules
- Fig. 2 : Light microscopic picture of encapsulated DCPD and Grubb's catalyst
- Fig. 3 : Ring opening metathesis polymerization of DCPD
- Fig. 4 : Optical micrographs of hollow glass fibers
- Fig. 5 : Schematic representation of sel-healing concept using hollow fibers
- Fig. 6 : Schematic showing self-healing materials with 3D microvascular networks
- Fig. 7 : Schematic showing formation of highly cross-Iinked polymer (3M4F) using a multi-diene (four furan moieties, 4F) and multi-dienophile (three maleimide moieties, 3M) via DA reactions
- Fig. 8 : Chemical structure of functionalized maleimide and furan monomers
- Fig. 9 : Thermally reversible cross-linking reaction between TMI and TF through DA and retro-DA reactions
- Fig. 11 : Preparation of thermally reversible polyamides
- Fig. 12 : Schematic showing reversible ionic interactions
- Fig. 13 : Examples of supramolecular polymers from the literature : main-chain supramolecular polymers and side-chain supramolecular polyemrs
- Fig. 17 : Polymeric bis-terpyridine-metal complex (charge and anions omitted)
- Fig. 18 : Schematic showing electrohydrodynamic aggregation of particles
- Fig. 19 : Schematic showing conductive self-healing materials
- Fig. 20 : Representative three-dimensionsl profiles of a spherical indent at load of 15 N fresh indent and after healing above the austenite finish temperature
- Fig. 21 : Schematics showing electrolytic co-deposition of microcapsules (or mesoporous nanoparticles containing corrosion inhibitors) with metal ions
- Fig. 22 : Schematic illustration of a crack in the epoxy coating
- Fig. 23 : Schematic representation of the self-healing effect of the TiO, particle polymer composite coating
- Fig. 24 : Schematic Illustration of self healing zipper-like mechanism
- Fig. 25 : Schematic Self-healing mechanism of polyelectrolyte multilayers
- Fig. 25 : Schematic shows how a capsule is created
- Fig. 26 : Schematic shows structure of silane film
- Fig. 27 : Epoxy with control, epoxy with corrosion inhibitor and epoxy with self healing additives
- Fig. 28 : Schematic showing the reflow effect of self-haling clear coats |
En ligne : |
https://drive.google.com/file/d/1Z-i4m7ZBZI117NIGydOCioBCW5SAUQyz/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=34661 |
in PAINTINDIA > Vol. LXX, N° 9 (09/2020) . - p. 56-82
[article]
|