Accueil
Détail de l'auteur
Auteur Z. Ahmad |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Effect of plug temperature on the strain and thickness distribution of components made by plug assist thermoforming / D. Marathe in INTERNATIONAL POLYMER PROCESSING, Vol. XXXI, N° 2 (05/2016)
[article]
Titre : Effect of plug temperature on the strain and thickness distribution of components made by plug assist thermoforming Type de document : texte imprimé Auteurs : D. Marathe, Auteur ; D. Rokade, Auteur ; L. Busher Azad, Auteur ; K. Jadhav, Auteur ; S. Mahajan, Auteur ; Z. Ahmad, Auteur ; S. Gupta, Auteur ; S. Kulkarni, Auteur ; V. Juvekar, Auteur ; Ashish Lele, Auteur Année de publication : 2016 Article en page(s) : p. 166-178 Langues : Anglais (eng) Catégories : Etirement (mécanique)
Matières plastiques -- Thermoformage
Polymères -- Effets de la température
Polystyrène choc
RhéologieIndex. décimale : 668.4 Plastiques, vinyles Résumé : Plug temperature is a key parameter affecting the thickness distribution of thermoplastic components made by plug assist thermoforming. For a specified pair of plug and plastic sheet, the variation in plug temperature can alter the coefficient of friction (COF) between the pair. We show here how the temperature dependence of COF influences the nature and extent of biaxial stretching of the sheet and consequently the thickness distribution of the thermoformed component. In the present study, high impact polystyrene (HIPS) sheets were thermoformed into axisymmetric cups using a plug-assist process in which the aluminum plug temperature (Tplug) was varied from ambient to above the glass transition temperature of HIPS (∼100 °C). Biaxial strain maps on the surfaces of the formed cups were measured and quantified using Grid Strain Analysis (GSA). Thickness distributions of the cups were also measured. Temperature dependent COF between HIPS and aluminum was determined independently using a rotational rheometer. The measured COF was low for T < 100 °C, whereas it increased appreciably at and above 100 °C. We conclude that when Tplug < 100 °C the HIPS sheet slips on the plug during forming, and this results in biaxial stretching of the base and walls of the formed cup. In contrast for Tplug > 100 °C, a significant reduction in the magnitude of slip is expected. Here the sheet is gripped at the clamp and by the plug during forming which causes reduced biaxial stretching of the base and increased uniaxial stretching of the walls of the cup. Simulations of plug-assist thermoforming using a temperature dependent COF showed qualitative agreement with the GSA data thereby supporting our inferences. DOI : 10.3139/217.3060 Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=26171
in INTERNATIONAL POLYMER PROCESSING > Vol. XXXI, N° 2 (05/2016) . - p. 166-178[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 17979 - Périodique Bibliothèque principale Documentaires Disponible Study of rheology and plug assist thermoforming of linear and branched PP homopolymer and impact copolymer / Deepti Marathe in INTERNATIONAL POLYMER PROCESSING, Vol. XXXIV, N° 3 (07/2019)
[article]
Titre : Study of rheology and plug assist thermoforming of linear and branched PP homopolymer and impact copolymer Type de document : texte imprimé Auteurs : Deepti Marathe, Auteur ; S. Shelar, Auteur ; S. Mahajan, Auteur ; Z. Ahmad, Auteur ; S. Gupta, Auteur ; S. Kulkarni, Auteur ; V. Juvekar, Auteur ; Ashish Lele, Auteur Année de publication : 2019 Article en page(s) : p. 339-355 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Copolymères
Homopolymères
Matières plastiques -- Thermoformage
Poinçonnage (thermoformage)
Polymères ramifiés
Polypropylène
RhéologieIndex. décimale : 668.4 Plastiques, vinyles Résumé : Polypropylene (PP) is one of the fastest growing thermoplastic polymers in the world, second only to polyethylene. This is primarily due to its excellent balance of physical and chemical properties at a lower cost. PP however possesses low melt strength on account of its linear structure and hence is not easily amenable to processing techniques that involve free surface stretching deformations like thermoforming, blow molding and extrusion film casting. One way to enhance the melt strength of PP is to incorporate long chain branches in its molecular architecture. The present study focuses on the impact of rheology of linear and branched PP on their thermoforming characteristics. Two grades each of linear and long chain branched (LCB) PP homopolymer and impact copolymer (ICP) were used. It was observed that the LCB-PP homopolymer and LCB-ICP showed higher flow activation energy, reduced value of loss tangent and nearly equal frequency dependence of storage and loss moduli in shear rheology. Also, a strong strain hardening behavior was displayed in extensional rheology by the LCB grades. Plug assist thermoforming experiments were carried out to assess the effect of long chain branching on surface strain and thickness distribution for axisymmetric cups of two draw ratios. Biaxial surface strain maps of the formed cups were quantified using Grid Strain Analysis (GSA). Thermoformed cups made from LCB-PP homopolymer and LCB-impact copolymer showed lower surface strain and overall higher thickness as compared to cups made from their linear counterparts, which is in accordance with what might be expected from their rheology. Note de contenu : - MATERIALS AND METHODS : Materials - Rheology - Sagging - Plug assisted forming
- RESULTS AND DISCUSSION : Rheology - Sagging - Plug assisted formingDOI : https://doi.org/10.3139/217.3704 En ligne : https://www.degruyter.com/document/doi/10.3139/217.3704/pdf Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32896
in INTERNATIONAL POLYMER PROCESSING > Vol. XXXIV, N° 3 (07/2019) . - p. 339-355[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 21036 - Périodique Bibliothèque principale Documentaires Disponible