Titre : |
Surface treatment with atmospheric plasma : The chemistry of an atmospheric plasma surface treatment must be adapted to the targeted process |
Type de document : |
texte imprimé |
Auteurs : |
Nicolas Vandencasteele, Auteur |
Année de publication : |
2020 |
Article en page(s) : |
p. 20-25 |
Note générale : |
Bibliogr. |
Langues : |
Américain (ame) |
Catégories : |
Adhésion Energie de surface Essais de pelage Fluoropolymères Plasma à pression atmosphériqueUn plasma à pression atmosphérique (ou plasma à PA ou plasma froid) est le nom donné à une catégorie spéciale de plasma pour lequel la pression approche celle de l’atmosphère.
Le plasma à pression atmosphérique marque une nette différence avec le plasma basse et haute pression. En effet, contrairement à ces derniers aucune enceinte de traitement n'est nécessaire. Ce type de plasma peut donc être utilisé directement sur ligne de production, évitant ainsi l'utilisation de vide qui est extrêmement onéreuse. Polymères Revêtements anti-adhésion Traîtements de surface
|
Index. décimale : |
668.3 Adhésifs et produits semblables |
Résumé : |
Most polymers have a low surface energy, which results in difficulties when further processing (e.g., coating, printing, or gluing) and requires the use of surface treatment to increase the surface energy. Though many different surface treatments exist, the most well-known methods include flame treatment, corona treatment, and the use of wet primers. Flame and corona treatment increase the surface energy of materials by oxidizing them, while wet primers introduce chemical functions on the surface to increase the surface energy. |
Note de contenu : |
- Understading th etechnology
- Industrial applications
- Release coatings
- Continuous development
- Fig. 1 : Illustration of the competition between functionalization and degradation of the material during corona treatment
- Fig. 2 : Schematic of grafting treatment onto PE by N2 plasma
- Fig. 3 : Evolution of the surface energy of a BOPP film as a function of dosage and aging
- Fig. 4 : Comparison of peel force and surface energy for an ECTFE sample treated with two dopants
- Fig. 5 : Comparison of peel force and amount of nitrogen grafted onto the surface (determined by X-ray photoelectron spectroscopy) for an ECTFE sample treated with two dopants
- Fig. 6 : Improvement of adhesion level with acrylic-based adhesive tape for fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and biaxially oriented polypropylene (BOPP). The specific plasma conditions are adapted to each material. Peel test is done at 180° and 300 mm/min
- Fig. 7 : Transmission electron microscopy (TEM) image of a cross-section of plasma coating deposited on a 36 µm PET film. The coating (darker line at the center of the image) has a thickness of approximately 10 nm
- Fig. 8 : Stability of the process during industrial production of release liner by plasma coating. Each point represents the average of three measurements made on the full width of the film (36 µm PET film coated over a width of 2 m and length of 2,000 m).
- Tableau 1 : Comparison of various commercial release liners (RLs) produced by classical wet coating methods and plasma coating. Different release chemistries are compared. The peel force is measured with an acrylic-based PSA, and testing is done at 180° and 300 mm/min. Subsequent adhesion (SA) is measured using a tape sample. The level of extractable siloxane is measured with a procedure adapted from IDEMA M 7 98 |
En ligne : |
https://www.adhesivesmag.com/articles/97474-surface-treatment-with-atmospheric-p [...] |
Format de la ressource électronique : |
Html |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=33386 |
in ADHESIVES & SEALANTS INDUSTRY (ASI) > Vol. 27, N° 1 (01/2020) . - p. 20-25