[article]
Titre : |
The effect of novel light stabilisers enhance UV filtering in waterborne UV-curable coatings |
Type de document : |
texte imprimé |
Auteurs : |
Yung-Chi Yang, Auteur ; Pei-Yun Lee, Auteur ; Miles Hsieh, Auteur ; Yin-Ting Lai, Auteur ; Chung-Han Lu, Auteur ; Yao-Hsing Huang, Auteur |
Année de publication : |
2019 |
Article en page(s) : |
p. 22-29 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Analyse de variance En statistique, l'analyse de la variance (terme souvent abrégé par le terme anglais ANOVA : ANalysis Of VAriance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires ; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire).
Ce test s'applique lorsque l'on mesure une ou plusieurs variables explicatives catégorielles (appelées alors facteurs de variabilité, leurs différentes modalités étant parfois appelées "niveaux") qui ont de l'influence sur la loi d'une variable continue à expliquer. On parle d'analyse à un facteur lorsque l'analyse porte sur un modèle décrit par un seul facteur de variabilité, d'analyse à deux facteurs ou d'analyse multifactorielle sinon. (Wikipedia) Filtration Photodétérioration Plan d'expérience Rayonnement ultraviolet Revêtements en phase aqueuse -- Additifs Revêtements en phase aqueuse -- Séchage sous rayonnement ultraviolet Stabilisants à la lumière
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
Waterborne ultra violet (UV)-curable coatings have been developed to replace conventional UV-curable coatings to lower VOC content. Due to fast-drying and short processing time, UV-curable coatings are widely used in various industries. However, there are two major challenges : The first one is discolouration after long-term exposure to sunlight ; the other is to keep the ability of UV filtering, since waterborne UV-curable coatings are usually applied to the surface as a protective top coat.
The novel light stabiliser (NLS) has been developed specifically for waterborne UV-curable coatings. Design of Experiment (DOE) was used in the study. Test data showed that the designed NLS would not interfere with the curing speed of the tested clear waterborne UV-curable coating system. Moreover, the results confirmed that increasing the concentration of NLS could enhance the UV filtering ability and weatherability of the tested clear top coat more effectively than by increasing the coating thickness : At 365nm wavelength, the effect factor of NLS is 62.5%, while DFT (dry film thickness) is 20.9% ; at 380nm, the effect factor of NLS is 47.7%, while DFT is only 27.4%. The test results confirmed the designed NLS could block the UV light without compromising the UV-curing speed and is suitable for enhancing the weatherability and protection ability of the clear waterborne UV-curable coatings. |
Note de contenu : |
- EXPERIMENT : Materials - Equipment - Methods
- RESULTS AND DISCUSSION : Screening design - Effects of waterborne UV absorber - effects of waterborne HALS - Effects of film thickness - Effects of novel light stabilisers (NLS) - Evaluation of optimised situation - Effects of NLS and film thickness on 365 nm UV filtering - Effects on NLS and film thickness on 380nm UV filtering - Effects of NLS and film thickness on yellowing - The optimal prediction profiler - Response surface methodology (RSM)
- Table 1 : Compositions of waterborne UV model formulation
- Table 2 : Classification of light stabilisers
- Table 3 : Details of screening design and test results (R2 = 0.99, Radj2 = 0.97, RMSE = 0.008)
- Table 4 : Parameter estimates (R2 = 0.99, Radj2 = 0.97, RMSE = 0.008)
- Table 5 : Analyse of variance (ANOVA)
- Table 6 : Evaluation of optimal results
- Table 7 : Analysis of variance (anova) (R2 = 0.92, Radj2 = 0.88, RMSE = 10.26)
- Table 8 : Parameter estimates
- Table 9 : Analysis of variance (ANOVA) (R2 = 0.91, Radj2 = 0.88, RMSE = 9.98)
- Table 10 : Parameter estimates
- Table 11 : Analysis of variance (ANOVA) (R2 = 0.96, Radjw = 0.94, RMSE = 0.75)
- Table 12 : Parameter estimates
- Fig. 1 : The effect of curing energy with waterborne UVA, HALS and NLS in waterborne UV curable model formulation
- Fig. 2 : Effect of NLS and film thickness at 365nm wavelength in waterborne UV curable model formulation
- Fig. 3 : Effects of NLS and film thickness at 380nm wavelength in waterborne UV curable model formulation
- Fig. 4 : Effects of NLS and film thickness to yellowing reduction in waterborne curable model formulation
- Fig. 5 : Effects of NLS and DFT at 365nm, 380nm and reduced yellowing after weathering for 120hr (Optimal Prediction Profiler)
- Fig. 6 : Response surface methodology (NLS vs DFT vs 365nm)
- Fig. 7 : Response surface methodology (NLS vs DFT vs 380nm)
- Fig. 8 : Response surface methodology (NLS vs DFT vs Ml |
En ligne : |
https://drive.google.com/file/d/172I5El11SpHSoUa6i6KuCXyqiQqNds17/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=32120 |
in POLYMERS PAINT COLOUR JOURNAL - PPCJ > Vol. 209, N° 4649 (03/2019) . - p. 22-29
[article]
|