Titre : |
3D textile-reinforced composites : from manufacturing to structural design |
Type de document : |
texte imprimé |
Auteurs : |
Dimytro Vastukov, Auteur ; Yang Liu, Auteur ; Chung-Hae Park ; Patricia Krawczak |
Année de publication : |
2018 |
Article en page(s) : |
p. 67-69 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Catégories : |
Analyse multiéchelle Composites à fibres -- Propriétés mécaniques Modèles numériques Procédés de fabrication Renforts textiles Structures tridimensionnelles
|
Index. décimale : |
668.4 Plastiques, vinyles |
Résumé : |
Designing structural parts made of 3D textile-reinforced materials demands a deep understanding of the different physical phenomena to be accounted for at the individual steps from manufacturing to exploitation. The process relies on numerical methods to resolve multi-scale material modelling and includes the quantification of various manufacturing effects using advanced experimental techniques. |
Note de contenu : |
- Effects of the manufacturing process
- Examples of 3D textile composites
- Experimental techniques
- Material variability in the yarns
- Multi-scale material modelling
Fig. 1 : Effects of the manufacturing process on 30 textile-reinforced composites : (a) yarn shape distortion after the RTM process (reconstructed from a µCT image) ; b) local fibre packing variability (SEM image showing the horizontal and vertical fibre packing gradients) ; c) broken fibre bundles after the weaving process (reconstructed from µCT data. the image shows the broken fibre in the binder)
- Fig. 2 : Two examples of 3D textile-reinforced composites ; b) 3D orthogonal glass fibre composite fil ; and multiaxial composite
- Fig. 3 : Measuring weft yarn cross sections ; a) an example showing how the feature points are selected ; b) averaged characteristic cross sections of weft yarns
- Fig. 4 : Measuring warp yarn cross section : a) an example showing how the points are selected ; b) averaged characteristic cross sections of warp yarns
- Fig. 5 : A representative inter-yarn fibre volume fraction along the thickness and width directions of the L1 section in the weft column
- Fig. 6 : The computed local fibre orientations are distributed along the binder path, taking the real model as an example
- Fig. 7 : Overview of multi-scale modelling : a) simulted warp-directional stress-strain curves along the experimental upper and lower bounds ; evolution history of di in the matrix/collective warp/weft component ; b) statistical distribution of the damage value when the peak stress value is reached with yarn breakage in the warp yarns (d1) (loading along the warp direction) |
En ligne : |
https://drive.google.com/file/d/1MaMCqgg53tlZ6NBYtc_Qdxj1nI2se_WV/view?usp=drive [...] |
Format de la ressource électronique : |
Pdf |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=30950 |
in JEC COMPOSITES MAGAZINE > N° 121 (05-06/2018) . - p. 67-69