[article]
Titre : |
Step-change epoxy coatings for pipes, tanks, vessels and railcars |
Type de document : |
texte imprimé |
Auteurs : |
Mike O'Donoghue, Auteur ; Ian Fletcher, Auteur |
Année de publication : |
2018 |
Article en page(s) : |
p. 36-43 |
Note générale : |
Bibliogr. |
Langues : |
Américain (ame) |
Catégories : |
Acier au carbone Acier inoxydable AminesUne amine est un composé organique dérivé de l'ammoniac dont certains hydrogènes ont été remplacés par un groupement carboné. Si l'un des carbones liés à l'atome d'azote fait partie d'un groupement carbonyle, la molécule appartient à la famille des amides. Découvertes en 1849, par Wurtz les amines furent initialement appelées alcaloïdes artificiels.
On parle d'amine primaire, secondaire ou tertiaire selon que l'on a un, deux ou trois hydrogènes substitués.
Par exemple, la triméthylamine est une amine tertiaire, de formule N(CH3)3.
Typiquement, les amines sont obtenues par alkylation d'amines de rang inférieur. En alkylant l'ammoniac, on obtient des amines primaires, qui peuvent être alkylées en amines secondaires puis amines tertiaires. L'alkylation de ces dernières permet d'obtenir des sels d'ammonium quaternaire.
D'autre méthodes existent : 1. Les amines primaires peuvent être obtenues par réduction d'un groupement azoture, 2. Les amines peuvent aussi être obtenues par la réduction d'un amide, à l'aide d'un hydrure, 3. L'amination réductrice permet l'obtention d'amines substituées à partir de composés carbonylés (aldéhydes ou cétones), 4. Les amines primaires peuvent être obtenues par la réaction de Gabriel. Epoxydes Industrie pétrolière et gazière Métaux -- Revêtements protecteurs Polyamine cyclique Résistance thermique Revêtements organiques
|
Index. décimale : |
667.9 Revêtements et enduits |
Résumé : |
In the worldwide oil and gas industry, the application of epoxy phenolic coatings has been a dominant strategy in order to obtain high heat resistance from coatings and mitigate corrosion under insulation (CUI) of both insulated carbon and stainless steel pipes operating up to 392 F (200 C). These coatings, however, are sensitive to over-application, prone to cracking and costly to repair when damaged. Additionally, if applied below 50 F (10 C), epoxy phenolic coatings do not cure properly and can fail prematurely, and when applied close to this temperature, can impact shop heating costs, maintenance schedules and productivity.
The genesis and performance of a step-change epoxy coating for high heat-resistant service and CUI mitigation is investigated in this article. Based on a novel amine epoxy technology platform, this next generation high-temperature coating simplifies coating specifications and is easy to apply on carbon and stainless steel pipe externals for both insulated (CUI) and non-insulated service. Tolerant of over-application and possessing fast and sub-zero curing characteristics, the novel alkylated amine epoxy coating can enhance shop productivity and reduce project costs, thereby eliminating several challenges seen with traditional epoxy phenolic coatings.
This article also describes another step-change epoxy: a novel lining developed for the internals of tanks, pipes, vessels and railcar internals. A high-film-build, rapid-curing, single-leg spray-applied modified polycyclamine-cured epoxy (MPCE), this lining was primarily developed for high-temperature and high-pressure immersion service in harsh oil field services and later for railcar internals.
Aside from its high-temperature-resistant characteristics, the next-step MPCE was formulated to possess a smooth and abrasion-resistant surface with a low coefficient of friction and low surface energy, which markedly improved the flow properties of fluids and cargoes in tanks, pipes, vessels and railcars. |
Note de contenu : |
- Coatings for high heat and corrosion under insulation (CUI)
- A snapshot of epoxy resins : structure, reactivity andheat resistance : Bisphenol A resins - Bisphenol F resins - Novolac resins
- Linings for pipes, tanks, vessels and railcars
- Step change : alkylated amine epoxy technology
- Step change : modified polycyclamine-cured epoxy (MPCE) technology
- FIGURES : 1. Epoxy phenolic and alkylated amine networks. Conventional epoxy phenolic and Rigid network. Restricts film DFT tolerance. Alkylated amine epoxy. Flexible network. Increases film DTF tolerance - 2. CUI resistance from CCCPT - 3. Pipe spools coated with alkylated amine epoxy technology - 4. Pipe spools coated with alkylated amine epoxy technology - 5. MPCE railcar lining
- TABLES : 1. Conventional epoxy phenolic for high heat and CUI service - 2. Alkylated amine epoxy for high Heat and CUI service - 3. Tolerance to DFT over-application for a conventional epoxy phenolic - 4. Tolerance to DFT over-application for a novel alkylated amine epoxy - 5. Post-autoclave analysis from test program - 6. Critical surface tensions of a variety of substances |
En ligne : |
http://www.paintsquare.com/archive/?fuseaction=view&articleid=6250 |
Format de la ressource électronique : |
Web |
Permalink : |
https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=30376 |
in JOURNAL OF PROTECTIVE COATINGS & LININGS (JPCL) > Vol. 35, N° 3 (03/2018) . - p. 36-43
[article]
|