Résumé : |
Spray coating is a commercial and low-cost technique for the fabrication of large-area coatings and thin films, but it is a stochastic process that is hard to control, as far as the fabrication of thin coatings and solid films is concerned. On the other hand, drop-casting is a facile and more controllable coating technique than spray coating, but its application is limited to small-area thin solid films and coatings. The objective of this work is, therefore, to study the feasibility of impinging an array of droplets, rather than just one droplet, to fabricate polymeric and other solution-processed thin films with larger surface areas than those produced by conventional drop-casting. To this end, in this study, four droplets of poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS) solution are released simultaneously and impinged on the four vertices of a square on a wettable solid surface to make a thin film. The effect of the substrate texture on the spreading and the film formation process is studied. As a novel idea, the substrate is excited by ultrasonic vibration to improve the droplet spreading and coalescence. It is shown that as time elapses, the impinged droplets successfully coalesce and make a thin film. Surface morphology and roughness of the resulting PEDOT:PSS thin solid films show that, except on the edges, the resulting thin solid films are uniform. This leads us to conclude that the application of equal-sized and equally-spaced multiple droplets released simultaneously and impinged on vibrating substrates could be considered as a new coating technique, which has some of the benefits of the spray coating, but it is much more controllable than spray coating. |