Accueil
Détail de l'auteur
Auteur Richard W. Horobin |
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Affiner la recherche
Reactive dyes for living cells : Applications, artefacts, and some comparisons with textile dyeing / Richard W. Horobin in COLORATION TECHNOLOGY, Vol. 138, N° 1 (02/2022)
[article]
Titre : Reactive dyes for living cells : Applications, artefacts, and some comparisons with textile dyeing Type de document : texte imprimé Auteurs : Richard W. Horobin, Auteur ; Juan C. Stockert, Auteur ; Hua Zhang, Auteur Année de publication : 2022 Article en page(s) : p. 3-15 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Cellules
Colorants réactifs
Sondes fluorescentesIndex. décimale : 667.3 Teinture et impression des tissus Résumé : An inclusive chemical definition of “reactive” dyeing of textiles is introduced, encompassing the CI Azoic, CI Mordant, CI Reactive, CI Sulphur and CI Vat dye application classes. Such reactive dyeing increases fibre retention of dye and makes application practically possible. The analogous application of dyes and fluorescent probes as microscopic stains in biology and medicine is outlined, focussing on using reactive fluorescent probes with living cells. Parallels with textile dyeing are noted, eg, enhanced probe retention and facilitation of probe application. However, the primary purpose of using reactive probes with live cells is detection of properties of biological systems : to identify biological structures and chemical/biochemical contents ; assess biological functions and physicochemical properties; and determine changes in locations of cells and cell components. Problems occurring with such probes are outlined, particularly the problematic character of many standard protocols, and localisation artefacts arising with reactive probes whose reactant and product species are physiochemically significantly different. This latter problem is explored via a case study of possible reactant/product artefacts with probes for reactive oxygen species. Comparison of experimental observations of probe localisations with the localisations predicted using quantitative structure activity (QSAR) modelling indicates that such artefacts can occur with a significant proportion of chemically diverse, widely used, commercially available probes, as well as with experimental compounds reported in the literature. A graphical flowchart is provided to assess possible occurrence of reactant/product artefacts arising with reactive fluorescent probes localising in various organelles of living cells. Note de contenu : - Contrasting perspectives on “reactive” dyeing of textiles
- Dyes and fluorescent probes used as microscopic stains in biology and medicine
- Why are some fluorescent probes reactive ?
- Problems arising with reactive fluorescent probes applied to live cells
- Standard protocols are more problematic than commonly assumed
- Consequences of physicochemical differences between a reactant and its product
- Case study of possible reactant/product artefacts arising with probes for reactive oxygen species
- Predicting the occurrence of reactant/product localisation artefacts
- Assessing occurrence and frequency of reactant/product localisation artefacts
- Table 1 : Some illustrative examples of using fluorescent probes to obtain information concerning living biological systems
- Table 2 : Pay-offs of reactivity for different dye classes in textile dyeing, and for different probe types in investigations of living cells and tissues
- Table 3 : How differences in physicochemical properties influence cellular localisation of MTT Tetrazolium and MTT Formazan, the reactant and product species of a reactive probeDOI : https://doi.org/10.1111/cote.12577 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12577 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=37494
in COLORATION TECHNOLOGY > Vol. 138, N° 1 (02/2022) . - p. 3-15[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 23517 - Périodique Bibliothèque principale Documentaires Disponible Where do dyes go inside living cells ? Predicting uptake, intracellular localisation, and accumulation using QSAR models / Richard W. Horobin in COLORATION TECHNOLOGY, Vol. 130, N° 3 (06/2014)
[article]
Titre : Where do dyes go inside living cells ? Predicting uptake, intracellular localisation, and accumulation using QSAR models Type de document : texte imprimé Auteurs : Richard W. Horobin, Auteur Année de publication : 2014 Article en page(s) : p. 155-173 Note générale : Bibliogr. Langues : Anglais (eng) Catégories : Analyse quantitative (chimie)
Colorants -- Absorption
Colorants -- Toxicologie
QSAR (biochimie)Une relation quantitative structure à activité (en anglais : Quantitative structure-activity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique.
Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique. De plus lorsque les propriétés ou structures physiochimiques sont exprimées par des chiffres, on peut proposer une relation mathématique, ou relation quantitative structure à activité, entre les deux. L'expression mathématique obtenue peut alors être utilisée comme moyen prédictif de la réponse biologique pour des structures similaires.
La QSAR la plus commune est de la forme : activité = f(propriétés physico-chimiques et/ou structurales).
Toxicologie cellulaireIndex. décimale : 667.3 Teinture et impression des tissus Résumé : Uptake of dyes into living cells and organisms is of concern to several diverse groups of people. These include those not wishing dyes to enter cells (e.g. manufacturers and users of textile dyes, or laboratory workers using dyes as analytical reagents) and those requiring dye entry (e.g. biologists imaging cell contents, or clinicians using photoactive dyes as antitumour drugs). This diversity results in the need to consider an extremely wide range of dyes – and indeed of cells and organisms. An overview of methods for predicting uptake and intracellular localisation is provided, followed by a more detailed account of the concepts and procedures involved in decision?rule quantitative structure–activity relationship (QSAR) models. Some of these models permit the prediction of which dyes are likely to enter cells, and which dyes will be excluded. Other models predict where internalised dyes will localise within the live cells. Use of QSAR models to understand intracellular accumulation, redistribution, loss from the cell, and metabolic modification of dyes is also considered. In particular, the relationship of such predictions to toxicity is discussed. An extended case example is provided, describing the modelling of dye binding to nucleic acids in single?cell systems. A further case example then illustrates dye localisation in multicellular organisms. Finally, conclusions, critiques, and probable future directions concerning the QSAR modelling approach to dye uptake and localisation are given. A summary of key QSAR decision rules in the form of decision logic tabulations is provided. Note de contenu : - WHO NEEDS TO KNOW - AND DOES IT MATTER - WHERE DYES GO ?
- WHICH TYPES OF DYE ARE CONSIDERED HERE ?
- WHICH CELLS (AND ORGANISMS) ARE OF CONCERN ? AND IN WHAT CONTEXT ?
- METHODS OF PREDICTING UPTAKE AND LOCALISATION, A BRIEF INTRODUCTION
- PREDICTIVE DECISION-RULE QSAR MODELS : CONCEPTS AND PROCEDURES
- WHICH DYES ENTER CELLS, AND WHICH DO NOT ? PREDICTING THE DIFFERENCES
- WHERE DYES GO INSIDE LIVE CELLS ? PREDICTING LOCALISATION : What are the start points - Possibility 1 : no further dye redistribution - Possibility 2 : dye redistribution occurs - Endoplasmic reticular membranes - Generic biomembranes - Golgi apparatus membranes - Lipid droplets - Lysosomes/acidic organelles - Mitochondria - Nuclear chromatin - Nucleolar and cytoplasmic ribosomal dsRNA - Phagosome - Localisation in organelles, some complications
- WHAT HAPPENS NEXT ? THE VARIED FATES OF DYES WITHIN CELLS : Accumulation - Redistribution, following damage to cells - Loss of dye from cells - Metabolism of dyes
- HOW DOES ALL THIS RELATE TO TOXICITY ?
- CASE EXAMPLE 1 - PREDICTING DYE ACCUMULATION IN NUCLEIC ACID-RICH SITES WITHIN SINGLE-CELL EUKARYOTIC SYSTEMS
- CASE EXAMPLE 2 - PREDICTING DYE LOCALISATION IN MULTICELLULAR ORGANISMS
- CONCLUSIONS, CRITIQUES, AND FUTURE DIRECTIONSDOI : 10.1111/cote.12093 En ligne : https://onlinelibrary.wiley.com/doi/epdf/10.1111/cote.12093 Format de la ressource électronique : Permalink : https://e-campus.itech.fr/pmb/opac_css/index.php?lvl=notice_display&id=21443
in COLORATION TECHNOLOGY > Vol. 130, N° 3 (06/2014) . - p. 155-173[article]Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 16271 - Périodique Bibliothèque principale Documentaires Disponible